Spaces:
Runtime error
Runtime error
File size: 1,240 Bytes
1b27ac3 5b4c169 1b27ac3 4ffc5f1 ce10f9a 07fca4f d43b4cf ce10f9a 35f0746 604d57b 1b27ac3 05bab40 47f2ac0 d5b1d28 1b27ac3 dac4aa1 1b27ac3 63e1b70 1b27ac3 35f0746 1917b0b d5b1d28 35f0746 ce8a810 35f0746 1917b0b a3ae69c 1b27ac3 a3ae69c ce10f9a a3ae69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
import requests
import gradio as gr
api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def analyze_sentiment(text):
output = query({
"inputs": f'''<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are a feeling analyser and you'll say only "positive1" if I'm feeling positive and "negative1" if I'm feeling sad
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{text}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
'''
})
if isinstance(output, list) and len(output) > 0:
response = output[0].get('generated_text', '').strip().lower()
positive_count = response.count('positive')
negative_count = response.count('negative')
if positive_count >= 2:
return 'positive'
elif negative_count >= 2:
return 'negative'
else:
return f"Erreur: Réponse ambiguë - '{response}'"
demo = gr.Interface(
fn=analyze_sentiment,
inputs="text",
outputs="text"
)
demo.launch() |