Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig | |
import os | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
device = "cuda" | |
token=os.environ["TOKEN"] | |
model_id="aipicasso/emix-1-0" | |
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token) | |
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token) | |
negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors") | |
state_dict = load_file(negative_ti_file) | |
pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
pipe = pipe.to(device) | |
MODEL_NAME = "p1atdev/dart-v2-moe-sft" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) # trust_remote_code is required for tokenizer | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16) | |
model=model.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1344 | |
def infer(seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
prompt = ( | |
f"<|bos|>" | |
f"<copyright></copyright>" | |
f"<character></character>" | |
f"<|rating:general|><|aspect_ratio:tall|><|length:long|>" | |
f"<general>1girl<|identity:none|><|input_end|>" | |
) | |
inputs = tokenizer(prompt, return_tensors="pt").input_ids | |
with torch.no_grad(): | |
outputs = model.generate( | |
inputs.to(device), | |
do_sample=True, | |
temperature=1.0, | |
top_p=1.0, | |
top_k=100, | |
max_new_tokens=64, | |
num_beams=1, | |
) | |
prompt=", ".join([tag for tag in tokenizer.batch_decode(outputs[0], skip_special_tokens=True) if tag.strip() != ""]) | |
negative_prompt="unaestheticXLv31, 3d, photo, realism" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image, prompt | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# 著作権のないイラスト | |
## Anime image without copyright | |
Generateボタンを押し、画像を生成してください。この画像がいくらきれいであろうと著作権は誰にもありません。この画像は時刻を入力とした自然現象によって作られたものです。美しいとは何でしょうか。 | |
""") | |
with gr.Row(): | |
run_button = gr.Button("Generate", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
generated_prompt = gr.Textbox(label="Generated prompt", show_label=False, interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=30, | |
step=1, | |
value=20, | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result,generated_prompt] | |
) | |
demo.queue().launch() |