Spaces:
Runtime error
Runtime error
File size: 1,231 Bytes
1fcb538 9131bec 1fcb538 931207e ba93ad8 617fdc7 3ab53fa 617fdc7 f81dc6c 57301c2 96f9a87 9131bec 96f9a87 432ab81 96f9a87 617fdc7 96f9a87 9131bec 96f9a87 9131bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
st.title('Fitting simple models with JAX')
st.header('A quadratric regression example')
st.markdown('**This is a simple text** to specify the goal of this simple data app\n.')
st.latex('h(\boldsymbol x, \boldsymbol w)= \sum_{k=1}^{K}\boldsymbol w_{k} \phi_{k}(\boldsymbol x)')
number_of_observations = st.sidebar.slider('Number of observations', min_value=50, max_value=150, value=50)
noise_standard_deviation = st.sidebar.slider('Standard deviation of the noise', min_value = 0.0, max_value=2.0, value=0.25)
np.random.seed(2)
X = np.column_stack((np.ones(number_of_observations),
np.random.random(number_of_observations)))
w = np.array([3.0, -20.0, 32.0]) # coefficients
X = np.column_stack((X, X[:,1] ** 2)) # add x**2 column
additional_noise = 8 * np.random.binomial(1, 0.03, size = number_of_observations)
y = np.dot(X, w) + noise_standard_deviation * np.random.randn(number_of_observations) \
+ additional_noise
fig, ax = plt.subplots(dpi=320)
ax.set_xlim((0,1))
ax.set_ylim((-5,20))
ax.scatter(X[:,1], y, c='r', edgecolors='black')
st.pyplot(fig)
st.write(X[:5, :]) |