AlejandroMolina's picture
Update app.py
2fe7e34
raw
history blame
4.1 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchaudio
import sys
import matplotlib.pyplot as plt
import IPython.display as ipd
from tqdm import tqdm
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sample_rate = 16000
new_sample_rate = 8000
transform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=new_sample_rate)
class M5(nn.Module):
def __init__(self, n_input=1, n_output=35, stride=16, n_channel=32):
super().__init__()
self.conv1 = nn.Conv1d(n_input, n_channel, kernel_size=80, stride=stride)
self.bn1 = nn.BatchNorm1d(n_channel)
self.pool1 = nn.MaxPool1d(4)
self.conv2 = nn.Conv1d(n_channel, n_channel, kernel_size=3)
self.bn2 = nn.BatchNorm1d(n_channel)
self.pool2 = nn.MaxPool1d(4)
self.conv3 = nn.Conv1d(n_channel, 2 * n_channel, kernel_size=3)
self.bn3 = nn.BatchNorm1d(2 * n_channel)
self.pool3 = nn.MaxPool1d(4)
self.conv4 = nn.Conv1d(2 * n_channel, 2 * n_channel, kernel_size=3)
self.bn4 = nn.BatchNorm1d(2 * n_channel)
self.pool4 = nn.MaxPool1d(4)
self.fc1 = nn.Linear(2 * n_channel, n_output)
def forward(self, x):
x = self.conv1(x)
x = F.relu(self.bn1(x))
x = self.pool1(x)
x = self.conv2(x)
x = F.relu(self.bn2(x))
x = self.pool2(x)
x = self.conv3(x)
x = F.relu(self.bn3(x))
x = self.pool3(x)
x = self.conv4(x)
x = F.relu(self.bn4(x))
x = self.pool4(x)
x = F.avg_pool1d(x, x.shape[-1])
x = x.permute(0, 2, 1)
x = self.fc1(x)
return F.log_softmax(x, dim=2)
def get_likely_index(tensor):
# find most likely label index for each element in the batch
return tensor.argmax(dim=-1)
def index_to_label(index):
# Return the word corresponding to the index in labels
# This is the inverse of label_to_index
return labels[index]
def predict(filepath):
tensor=(torchaudio.load(filepath))[0]
# Use the model to predict the label of the waveform
tensor = tensor.to(device)
tensor = transform(tensor)
tensor = model(tensor.unsqueeze(0))
tensor = get_likely_index(tensor)
tensor = index_to_label(tensor.squeeze())
return tensor
def record(seconds=1):
from google.colab import output as colab_output
from base64 import b64decode
from io import BytesIO
from pydub import AudioSegment
RECORD = (
b"const sleep = time => new Promise(resolve => setTimeout(resolve, time))\n"
b"const b2text = blob => new Promise(resolve => {\n"
b" const reader = new FileReader()\n"
b" reader.onloadend = e => resolve(e.srcElement.result)\n"
b" reader.readAsDataURL(blob)\n"
b"})\n"
b"var record = time => new Promise(async resolve => {\n"
b" stream = await navigator.mediaDevices.getUserMedia({ audio: true })\n"
b" recorder = new MediaRecorder(stream)\n"
b" chunks = []\n"
b" recorder.ondataavailable = e => chunks.push(e.data)\n"
b" recorder.start()\n"
b" await sleep(time)\n"
b" recorder.onstop = async ()=>{\n"
b" blob = new Blob(chunks)\n"
b" text = await b2text(blob)\n"
b" resolve(text)\n"
b" }\n"
b" recorder.stop()\n"
b"})"
)
RECORD = RECORD.decode("ascii")
print(f"Recording started for {seconds} seconds.")
display(ipd.Javascript(RECORD))
s = colab_output.eval_js("record(%d)" % (seconds * 1000))
print("Recording ended.")
b = b64decode(s.split(",")[1])
fileformat = "wav"
filename = f"_audio.{fileformat}"
AudioSegment.from_file(BytesIO(b)).export(filename, format=fileformat)
return torchaudio.load(filename)
model = torch.load('export.pkl',map_location=torch.device('cpu'))
gr.Interface(fn=predict, inputs=gr.inputs.Audio(source=record()[0]), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)