amanmibra's picture
Add predict endpoints
f352ab2
raw
history blame
1.27 kB
#
import sys
sys.path.append('..')
import os
from fastapi import FastAPI
from pydantic import BaseModel
import wget
# torch
import torch
# utils
from preprocess import process_from_filename, process_raw_wav
from cnn import CNNetwork
# load model
model = CNNetwork()
state_dict = torch.load("../models/void_demo.pth")
model.load_state_dict(state_dict)
print(f"Model loaded! \n {model}")
# /predict input
# class Data(BaseModel):
# wav:
app = FastAPI()
@app.get("/")
async def root():
return { "message": "Hello World" }
@app.get("/urlpredict")
def url_predict(url: str):
filename = wget.download(url)
wav = process_from_filename(filename)
print(f"\ntest {wav.shape}\n")
model_prediction = model_predict(wav)
return model_prediction["predicition_index"]
@app.put("/predict")
def predict(wav):
print(f"wav {wav}")
# return wav
wav = process_raw_wav(wav)
model_prediction = model_predict(wav)
return {
"message": "Voiced Identified!",
"data": model_prediction,
}
def model_predict(wav):
model_input = wav.unsqueeze(0)
output = model(model_input)
prediction = torch.argmax(output, 1).item()
return {
"output": output,
"prediction_index": prediction,
}