NewsRecommender / app.py
amirhosseinkarami's picture
Update app.py
3558ad8
raw
history blame
801 Bytes
import gradio as gr
from Recommender import Recommender
from Preprocess import ModelUtils, Preprocess
data_path = "data"
model_path = "model_root"
data = pd.read_csv(data_path)
modelu = ModelUtils(model_path)
modelu.make_dirs()
modelu.download_model()
p = Preprocess("/content")
data = pd.read_csv(data_path)
rec = Recommender (4, 3, 0)
k = 3
table = [tuple(row) for row in data.to_numpy()]
def recom (title) :
rec.recommend_k(table, k, title)
demo = gr.Interface(fn=recom,
inputs=[gr.Dropdown(choices = list(desc['title'][:20]), multiselect=True, max_choices=3, label="Movies"),
gr.Radio(["bert", "scibert", "nltk" , "none"], value="none", label="Tokenization and text preprocess")],
outputs=gr.Textbox(label="Recommended"))
demo.launch()