Spaces:
Sleeping
Sleeping
File size: 9,350 Bytes
44f2ca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import json
import numpy as np
import random
import csv
import pickle
import tqdm
def clamp(x, min_val, max_val):
return int(max(min(x, max_val), min_val))
def generate_moving_frames_simpler(canvas_size, num_frames, aspect_ratio, bounding_box_size, motion_type, up_to_down_strict=False, keep_in_frame=True):
# Mapping size to bounding box dimensions
size_mapping = {'Small': 0.25, 'Medium': 0.3, 'Large': 0.3}
aspect_ratio_mapping = {'Rectangle Vertical': (1.33, 1), 'Rectangle Horizontal': (1, 1.33), 'Square': (1, 1)}
# Calculate bounding box dimensions
ratio = aspect_ratio_mapping[aspect_ratio]
box_height = int(canvas_size[0] * size_mapping[bounding_box_size] * ratio[0])
box_width = int(canvas_size[1] * size_mapping[bounding_box_size] * ratio[1])
x_init_pos = [0.1 * canvas_size[1], 0.25 * canvas_size[1], 0.45*canvas_size[1], 0.7 * canvas_size[1]]
y_init_pos = [0.1 * canvas_size[0], 0.25 * canvas_size[0], 0.45*canvas_size[0], 0.7 * canvas_size[0]]
speed_dir = random.choice([-1,1]) # random.randint(1, 3)*4
# print('-'*20)
# print(motion_type)
if 'up' in motion_type.lower():
# Freedom in horizontal init
# Vertical init depends on upward or downward motion
pos_x = random.choice(x_init_pos) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
if up_to_down_strict == 'up':
# pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
speed_dir = -1.
elif up_to_down_strict == 'down':
# pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
speed_dir = 1.
# y_end_max = canvas_size[0] - box_height
# else:
if speed_dir == 1.:
pos_y = np.random.choice(y_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = canvas_size[0] - box_height
else:
pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = box_height
max_speed = np.abs(y_end_max - pos_y) / num_frames
speed = random.randint(2, 4)*4
speed = min(speed, max_speed)
speed = speed_dir * speed
elif 'left' in motion_type.lower():
# Freedom in vertical init
# Horizontal init depends on upward or downward motion
pos_y = random.choice(y_init_pos) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
if up_to_down_strict:
speed_dir = 1.
if speed_dir == 1.:
pos_x = np.random.choice(x_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = canvas_size[1] - box_width
else:
pos_x = np.random.choice(x_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = box_width
max_speed = np.abs(x_end_max - pos_x) / num_frames
speed = random.randint(2, 4)*4
speed = min(speed, max_speed)
speed = speed_dir * speed
else:
speed_dir_y = random.choice([-1,1])
if speed_dir == 1.:
pos_x = np.random.choice(x_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = canvas_size[1] - box_width
else:
pos_x = np.random.choice(x_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
x_end_max = box_width
if speed_dir_y == 1.:
pos_y = np.random.choice(y_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = canvas_size[0] - box_height
else:
pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
y_end_max = box_height
max_speed_x = np.abs(x_end_max - pos_x) / num_frames
max_speed_y = np.abs(y_end_max - pos_y) / num_frames
speed_x = random.randint(2, 4)*4
speed_y = random.randint(2, 4)*4
speed_x = min(speed_x, max_speed_x)
speed_y = min(speed_y, max_speed_y)
speed_x, speed_y = (speed_dir * speed_x, speed_dir_y * speed_y)
frames = []
for _ in range(num_frames):
canvas = np.zeros(canvas_size)
# Determine movement direction and apply movement
if motion_type == "Left to right":
pos_x = (pos_x + speed) # % (canvas_size[1] - box_width)
pos_y = pos_y + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
elif motion_type == "Up to down":
pos_y = (pos_y + speed) # % (canvas_size[0] - box_height)
pos_x = pos_x + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
elif motion_type == "Zig-zag":
# Zig-zag motion alternates between horizontal and vertical movement
if _ % 2 == 0:
pos_x = (pos_x + speed_x) # % (canvas_size[1] - box_width)
else:
pos_y = (pos_y + speed_y) # % (canvas_size[0] - box_height)
canvas[clamp(pos_y, 0, canvas_size[0]):clamp(pos_y + box_height, 0, canvas_size[0]),
clamp(pos_x, 0, canvas_size[1]):clamp(pos_x + box_width, 0, canvas_size[1])] = 1
# Add frame to the list
frames.append(canvas)
return frames
def generate_stationary_frames_simpler(canvas_size, num_frames, aspect_ratio, bounding_box_size):
# Mapping size to bounding box dimensions
size_mapping = {'Small': 0.25, 'Medium': 0.3, 'Large': 0.3}
aspect_ratio_mapping = {'Rectangle Vertical': (1.33, 1), 'Rectangle Horizontal': (1, 1.33), 'Square': (1, 1)}
# Calculate bounding box dimensions
ratio = aspect_ratio_mapping[aspect_ratio]
box_height = int(canvas_size[0] * size_mapping[bounding_box_size] * ratio[0])
box_width = int(canvas_size[1] * size_mapping[bounding_box_size] * ratio[1])
x_init_pos = [0.1 * canvas_size[1], 0.25 * canvas_size[1], 0.45*canvas_size[1], 0.7 * canvas_size[1]]
y_init_pos = [0.1 * canvas_size[0], 0.25 * canvas_size[0], 0.45*canvas_size[0], 0.7 * canvas_size[0]]
pos_x = np.random.choice(x_init_pos) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
pos_y = np.random.choice(y_init_pos) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
# Initialize frames
frames = []
for _ in range(num_frames):
canvas = np.zeros(canvas_size)
# Determine movement direction and apply movement
pos_y = pos_y + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
pos_x = pos_x + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
canvas[clamp(pos_y, 0, canvas_size[0]):clamp(pos_y + box_height, 0, canvas_size[0]),
clamp(pos_x, 0, canvas_size[1]):clamp(pos_x + box_width, 0, canvas_size[1])] = 1
# Add frame to the list
frames.append(canvas)
return frames
input_file_path = "custom_prompts.csv"
output_file_path = "custom_prompts_with_bb.pkl"
num_videos_per_prompt = 3
video_id = 1100
all_records = []
frames_per_prompts = 3
num_frames = 16
with open('filtered_prompts.txt') as f:
GOOD_PROMPTS = set([x.strip() for x in f.readlines()])
with open(input_file_path, "r") as f:
data = csv.reader(f)
for row in tqdm.tqdm(data):
prompt = row[0]
prompt = prompt.replace('herd of', '').replace('group of', '').replace('flock of', '').replace('school of', '').replace('escalator', 'elevator')
subject = row[1].lower().replace('herd of', '').replace('group of', '').replace('flock of', '').replace('school of', '').replace('escalator', 'elevator')
if prompt not in GOOD_PROMPTS:
continue
canvas_size = (224, 224)
frames = []
if row[-1] == "Stationary":
for _ in range(frames_per_prompts):
frames.append(generate_stationary_frames_simpler(canvas_size, num_frames, row[3], row[2]))
else:
for _ in range(frames_per_prompts):
up_to_down_strict = False
if "up" in prompt.lower() or 'ascending' in prompt.lower():
up_to_down_strict = 'up'
elif "down" in prompt.lower() or 'descending' in prompt.lower():
up_to_down_strict = 'down'
else:
up_to_down_strict = False
frames.append(generate_moving_frames_simpler(canvas_size, num_frames, row[3], row[2], row[4], up_to_down_strict))
for i in range(frames_per_prompts):
record_dict = {"video_id": video_id, "prompt": prompt, "frames": frames[i], "subject": row[1], "motion": row[4], "aspect_ratio": row[3], "bounding_box_size": row[2]}
all_records.append(record_dict)
video_id += 1
print(f"Wrote {len(all_records)} records to {output_file_path}")
with open(output_file_path, "wb") as f:
pickle.dump(all_records, f)
|