Anshul Nasery
Demo commit
44f2ca8
raw
history blame
9.25 kB
import gradio as gr
import os
import numpy as np
from gradio_utils import *
def image_mod(image):
return image.rotate(45)
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from models.pipelines import TextToVideoSDPipelineSpatialAware
NUM_POINTS = 3
NUM_FRAMES = 24
LARGE_BOX_SIZE = 256
def generate_video(pipe, overall_prompt, latents, get_latents=False, num_frames=24, num_inference_steps=50, fg_masks=None,
fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, custom_attention_mask=None, fg_prompt=None):
video_frames = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, frozen_mask=fg_masks,
frozen_steps=frozen_steps, latents_all_input=fg_masked_latents, frozen_prompt=frozen_prompt, custom_attention_mask=custom_attention_mask, fg_prompt=fg_prompt,
make_attention_mask_2d=True, attention_mask_block_diagonal=True, height=320, width=576 ).frames
if get_latents:
video_latents = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, output_type="latent").frames
return video_frames, video_latents
return video_frames
# def generate_bb(prompt, fg_object, aspect_ratio, size, trajectory):
# if len(trajectory['layers']) < NUM_POINTS:
# raise ValueError
# final_canvas = torch.zeros((NUM_FRAMES,320,576))
# bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
# bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 0.75) if aspect_ratio == "horizontal" else int(bbox_size_x * 1.25)
# bbox_coords = []
# # TODO add checks for trajectory
# for t in trajectory['layers']:
# bbox_coords.append([int(t.sum(axis=-2).argmax()*576/800), int(t.sum(axis=-1)[140:460].argmax())])
# bbox_coords = np.array(bbox_coords)
# # Make a list of length 24
# # Each element is a list of length 2
# # First element is the x coordinate of the bbox
# # Second element is a set of y coordinates of the bbox
# new_bbox_coords = [np.zeros(2,) for i in range(NUM_FRAMES)]
# divisor = int(NUM_FRAMES / (NUM_POINTS-1))
# for i in range(NUM_POINTS-1):
# new_bbox_coords[i*divisor] = bbox_coords[i]
# new_bbox_coords[-1] = bbox_coords[-1]
# # Linearly interpolate in the middle
# for i in range(NUM_POINTS-1):
# for j in range(1,divisor):
# new_bbox_coords[i*divisor+j][1] = int((bbox_coords[i][0] * (divisor-j) + bbox_coords[(i+1)][0] * j) / divisor)
# new_bbox_coords[i*divisor+j][0] = int((bbox_coords[i][1] * (divisor-j) + bbox_coords[(i+1)][1] * j) / divisor)
# for i in range(NUM_FRAMES):
# x = int(new_bbox_coords[i][0])
# y = int(new_bbox_coords[i][1])
# final_canvas[i,int(x-bbox_size_x/2):int(x+bbox_size_x/2), int(y-bbox_size_y/2):int(y+bbox_size_y/2)] = 1
# torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# try:
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
# except:
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
# fg_masks = F.interpolate(final_canvas.unsqueeze(1), size=(40,72), mode="nearest").to(torch_device)
# # Save fg_masks as images
# for i in range(NUM_FRAMES):
# cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
# seed = 2
# random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
# overall_prompt = f"A realistic lively {prompt}"
# video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
# fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
# return create_video(video_frames,fps=8, type="final")
def interpolate_points(points, target_length):
print(points)
if len(points) == target_length:
return points
elif len(points) > target_length:
# Subsample the points uniformly
indices = np.round(np.linspace(0, len(points) - 1, target_length)).astype(int)
return [points[i] for i in indices]
else:
# Linearly interpolate to get more points
interpolated_points = []
num_points_to_add = target_length - len(points)
points_added_per_segment = num_points_to_add // (len(points) - 1)
for i in range(len(points) - 1):
start, end = points[i], points[i + 1]
interpolated_points.append(start)
for j in range(1, points_added_per_segment + 1):
fraction = j / (points_added_per_segment + 1)
new_point = np.round(start + fraction * (end - start))
interpolated_points.append(new_point)
# Add the last point
interpolated_points.append(points[-1])
# If there are still not enough points, add extras at the end
while len(interpolated_points) < target_length:
interpolated_points.append(points[-1])
return interpolated_points
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
except:
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
def generate_bb(prompt, fg_object, aspect_ratio, size, motion_direction, trajectory):
# if len(trajectory['layers']) < NUM_POINTS:
# raise ValueError
final_canvas = torch.zeros((NUM_FRAMES,320//8,576//8))
bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 1.33) if aspect_ratio == "horizontal" else int(bbox_size_x * 0.75)
bbox_coords = []
image = trajectory['composite']
print(image.shape)
image = cv2.resize(image,(576, 320))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY_INV)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Process each contour
bbox_points = []
for contour in contours:
# You can approximate the contour to reduce the number of points
epsilon = 0.01 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# Extracting and printing coordinates
for point in approx:
y, x = point.ravel()
if x in range(1,319) and y in range(1,575):
bbox_points.append([x,y])
if motion_direction in ['l2r', 'r2l']:
sorted_points = sorted(bbox_points, key=lambda x: x[1], reverse=motion_direction=="r2l")
else:
sorted_points = sorted(bbox_points, key=lambda x: x[0], reverse=motion_direction=="d2u")
target_length = 24
final_points = interpolate_points(np.array(sorted_points), target_length)
# Remember to reverse the co-ordinates
for i in range(NUM_FRAMES):
x = int(final_points[i][0])
y = int(final_points[i][1])
# Added Padding
final_canvas[i, max(int(x-bbox_size_x/2),16) // 8:min(int(x+bbox_size_x/2), 304)// 8,
max(int(y-bbox_size_y/2),16)// 8:min(int(y+bbox_size_y/2),560)// 8] = 1
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fg_masks = final_canvas.unsqueeze(1).to(torch_device)
# # Save fg_masks as images
for i in range(NUM_FRAMES):
cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
seed = 2
random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
overall_prompt = f"A realistic lively {prompt}"
video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
return create_video(video_frames,fps=8, type="final")
demo = gr.Interface(
fn=generate_bb,
inputs=["text", "text", gr.Radio(choices=["square", "horizontal", "vertical"]), gr.Radio(choices=["small", "medium", "large"]), gr.Radio(choices=["l2r", "r2l", "u2d", "d2u"]),
gr.Paint(value={'background':np.zeros((320,576)), 'layers': [], 'composite': np.zeros((320,576))},type="numpy", image_mode="RGB", height=320, width=576)],
outputs=gr.Video(),
)
if __name__ == "__main__":
demo.launch(share=True)