Spaces:
Running
Running
File size: 7,768 Bytes
0c0f086 7200b01 9f46468 7200b01 0c0f086 7200b01 0c0f086 7200b01 0c0f086 7200b01 0c0f086 7200b01 0c0f086 7200b01 8383fbb 7200b01 8383fbb 7200b01 8383fbb 7200b01 0c0f086 8383fbb 7200b01 0c0f086 8383fbb 7200b01 8383fbb 0c0f086 7200b01 0c0f086 7200b01 0c0f086 8383fbb 0c0f086 7200b01 0c0f086 8383fbb 7200b01 0c0f086 6094dcf 8383fbb 0c0f086 8383fbb 0c0f086 7200b01 0c0f086 7200b01 cae199e 0c0f086 7200b01 0c0f086 7200b01 0c0f086 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
"""
This module provides functionality for displaying and analyzing model benchmark results.
It includes functions for data processing, sorting, and a Gradio interface for user interaction.
"""
import logging
import re
import gradio as gr
import pandas as pd
from results import instance_type_mappings, results
logging.basicConfig(level=logging.DEBUG)
def get_model_names():
"""
Retrieve a sorted list of model names from the results data.
Returns:
list: Sorted list of model names.
"""
return sorted([model["name"] for model in results["models"]])
def get_models_by_architecture(model_name):
"""
Retrieve models with the same architecture as the specified model.
Args:
model_name (str): Name of the model to match architecture.
Returns:
list: List of models with the same architecture.
"""
selected_model = next(
(m for m in results["models"] if m["name"] == model_name), None
)
if not selected_model:
return []
model_type = selected_model.get("modelType", "")
return [m for m in results["models"] if m.get("modelType", "") == model_type]
def custom_sort_key(instance_type):
"""
Generate a custom sorting key for instance types.
Args:
instance_type (str): The instance type to generate a key for.
Returns:
tuple: A tuple used for sorting, containing (family, size_index).
"""
size_order = [
"xlarge",
"2xlarge",
"4xlarge",
"8xlarge",
"12xlarge",
"16xlarge",
"24xlarge",
"48xlarge",
]
match = re.match(r"([a-z]+\d+)\.(\w+)", instance_type)
if match:
family, size = match.groups()
return (
family,
size_order.index(size) if size in size_order else len(size_order),
)
return (instance_type, 0) # Fallback for non-standard instance types
def process_model_data(models):
"""Process model data and return a list of configurations."""
data = []
for model in models:
for config in model.get("configurations", []):
process_configuration(config, data)
return data
def process_configuration(config, data):
"""Process a single configuration and append to data list."""
instance_type = config.get("instanceType", "N/A")
instance_info = instance_type_mappings.get(instance_type, {})
instance_data = {
"cloud": instance_info.get("cloud", "N/A"),
"gpu": instance_info.get("gpu", "N/A"),
"gpu_ram": instance_info.get("gpuRAM", "N/A"),
"instance_type": instance_type,
}
if "configurations" in config:
for nested_config in config["configurations"]:
append_config_data(nested_config, instance_data, data)
else:
append_config_data(config, instance_data, data)
def append_config_data(config, instance_data, data):
"""Append configuration data to the data list."""
data.append(
{
"Cloud": instance_data["cloud"],
"Instance Type": instance_data["instance_type"],
"GPU": instance_data["gpu"],
"GPU RAM": instance_data["gpu_ram"],
"Status": config.get("status", "N/A"),
"Quantization": config.get("quantization", "N/A"),
"Container": config.get("container", config.get("tgi", "N/A")),
"Tokens per Second": config.get("tokensPerSecond", 0),
"Notes": config.get("notes", ""),
}
)
def create_and_process_dataframe(data):
"""Create and process the DataFrame with CPI calculation."""
df = pd.DataFrame(data)
df["CPI"] = df.apply(calculate_cpi, axis=1)
df["CPI"] = pd.to_numeric(df["CPI"], errors="coerce")
df["Tokens per Second"] = pd.to_numeric(df["Tokens per Second"], errors="coerce")
columns = df.columns.tolist()
tokens_per_second_index = columns.index("Tokens per Second")
columns.remove("CPI")
columns.insert(tokens_per_second_index + 1, "CPI")
df = df[columns]
return df.sort_values("CPI", ascending=False, na_position="last")
def calculate_cpi(row):
"""Calculate CPI for a given row."""
instance_price = instance_type_mappings.get(row["Instance Type"], {}).get(
"price", 0
)
tokens_per_second = row["Tokens per Second"]
try:
tokens_per_second = float(tokens_per_second)
if tokens_per_second > 0 and instance_price > 0:
return tokens_per_second / instance_price
return pd.NA
except (ValueError, TypeError):
return pd.NA
def style_dataframe(df):
"""Apply styling to the DataFrame."""
def color_status(val):
if val == "OK":
return "background-color: green; color: white"
if val == "KO":
return "background-color: red; color: white"
return ""
return df.style.map(color_status, subset=["Status"]).format(
{"CPI": "{:.2f}", "Tokens per Second": "{:.2f}"}, na_rep="N/A"
)
def display_results(model_name):
"""
Process and display results for a given model, including CPI calculation.
Args:
model_name (str): Name of the model to display results for.
Returns:
tuple: A tuple containing:
- str: Markdown formatted string with model information.
- pandas.DataFrame: Styled DataFrame with the results, including CPI.
"""
try:
models = get_models_by_architecture(model_name)
if not models:
logging.warning("No models found for %s", model_name)
return (
f"No results found for the selected model: {model_name}",
pd.DataFrame(),
)
model_type = models[0].get("modelType", "N/A")
data = process_model_data(models)
if not data:
logging.warning("No data extracted for %s", model_name)
return f"No data for the selected model: {model_name}", pd.DataFrame()
merged_models = set(model.get("name", "Unknown") for model in models)
merged_models_message = (
f"Note: Results merged from models: {', '.join(merged_models)}"
if len(merged_models) > 1
else None
)
result_text = f"## Results for {model_name}\n\nModel Type: {model_type}"
if merged_models_message:
result_text += f"\n\n{merged_models_message}"
df = create_and_process_dataframe(data)
styled_df = style_dataframe(df)
return result_text, styled_df
except (KeyError, ValueError, TypeError) as e:
logging.exception("Error in display_results: %s", e)
return f"An error occurred for {model_name}: {str(e)}", pd.DataFrame()
with gr.Blocks() as demo:
gr.Markdown("# Model Benchmark Results")
gr.Markdown(
"""This table shows the benchmark results for each model. \n\n
Configurations are default unless noted.\n
[TGI](https://huggingface.co/docs/text-generation-inference/reference/launcher),
[vLLM](https://docs.djl.ai/master/docs/serving/serving/docs/lmi/user_guides/vllm_user_guide.html),
[SGLang](https://github.com/sgl-project/sglang),
[Transformers-NeuronX](https://docs.djl.ai/master/docs/serving/serving/docs/lmi/user_guides/tnx_user_guide.html).\n\n
CPI means cost-perfomance index and is calculated as tokens per second / instance price."""
)
model_dropdown = gr.Dropdown(choices=get_model_names(), label="Select Model")
results_text = gr.Markdown()
results_output = gr.DataFrame(label="Results")
model_dropdown.change(
display_results, inputs=[model_dropdown], outputs=[results_text, results_output]
)
if __name__ == "__main__":
demo.launch()
|