Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,829 Bytes
b6bb234 a3e0baa b6bb234 2a68ddd 3fea55e b6bb234 2a68ddd b6bb234 2a68ddd 904cd6a 2a68ddd 904cd6a 2a68ddd b6bb234 a3e0baa 29991e1 a3e0baa 29991e1 7b0fbfe 606e959 29991e1 6c71f04 29991e1 6c71f04 11f0dcb 29991e1 b6bb234 29991e1 b6bb234 498b808 6c71f04 a3e0baa 11f0dcb 3fea55e 606e959 a3e0baa 3fea55e a3e0baa 11f0dcb 1c47239 3fea55e 11f0dcb a3e0baa 0e630bf 11f0dcb a3e0baa 11f0dcb 3fea55e 95675e7 a3e0baa 606e959 a3e0baa 606e959 a3e0baa b6bb234 a3e0baa b6bb234 a3e0baa 606e959 7b0fbfe 0731944 7b0fbfe 6c71f04 606e959 a3e0baa 6c71f04 606e959 6c71f04 b6bb234 bc18781 904cd6a 606e959 b6bb234 498b808 904cd6a a3e0baa 498b808 a3e0baa 498b808 904cd6a a3e0baa 498b808 a3e0baa 498b808 a3e0baa 0e630bf a3e0baa 498b808 a3e0baa 0e630bf b6bb234 6c71f04 a3e0baa 2a68ddd b6bb234 904cd6a 2a68ddd 904cd6a a3e0baa 904cd6a a3e0baa bc18781 2a68ddd bc18781 2a68ddd 904cd6a b6bb234 bc18781 29991e1 bc18781 2a68ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import argparse
import glob
import json
import os.path
import time
import datetime
from pytz import timezone
import torch
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
inport midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
def generate_drums(notes_times,
max_drums_limit = 8,
num_memory_tokens = 4096,
temperature=0.9):
x = torch.tensor([notes_times] * 1, dtype=torch.long, device='cpu')
o = 128
ncount = 0
while o > 127 and ncount < max_drums_limit:
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 256 <= o < 384:
ncount += 1
if o > 127:
x = torch.cat((x, out), 1)
return x.tolist()[0][len(notes_times):]
# =================================================================================================
@torch.no_grad()
def GenerateMIDI(input_midi, input_num_tokens):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = time.time()
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
print('-' * 70)
print('Input file name:', fn)
print('Req num tok:', input_num_tokens)
print('-' * 70)
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
escore_notes = [e for e in escore_notes if e[3] != 9]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes)
patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes)
dscore = TMIDIX.delta_score_notes(escore_notes, compress_timings=True, even_timings=True)
cscore = TMIDIX.chordify_score([d[1:] for d in dscore])
cscore_melody = [c[0] for c in cscore]
comp_times = [0] + [t[1] for t in dscore if t[1] != 0]
#===============================================================================
print('Selected Improv sequence:')
print(start_tokens)
print('-' * 70)
output_signature = 'Allegro Music Transformer'
output_file_name = 'Allegro-Music-Transformer-Music-Composition'
track_name = 'Project Los Angeles'
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
number_of_ticks_per_quarter = 500
text_encoding = 'ISO-8859-1'
output_header = [number_of_ticks_per_quarter,
[['track_name', 0, bytes(output_signature, text_encoding)]]]
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
['patch_change', 0, 1, list_of_MIDI_patches[1]],
['patch_change', 0, 2, list_of_MIDI_patches[2]],
['patch_change', 0, 3, list_of_MIDI_patches[3]],
['patch_change', 0, 4, list_of_MIDI_patches[4]],
['patch_change', 0, 5, list_of_MIDI_patches[5]],
['patch_change', 0, 6, list_of_MIDI_patches[6]],
['patch_change', 0, 7, list_of_MIDI_patches[7]],
['patch_change', 0, 8, list_of_MIDI_patches[8]],
['patch_change', 0, 9, list_of_MIDI_patches[9]],
['patch_change', 0, 10, list_of_MIDI_patches[10]],
['patch_change', 0, 11, list_of_MIDI_patches[11]],
['patch_change', 0, 12, list_of_MIDI_patches[12]],
['patch_change', 0, 13, list_of_MIDI_patches[13]],
['patch_change', 0, 14, list_of_MIDI_patches[14]],
['patch_change', 0, 15, list_of_MIDI_patches[15]],
['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [patch_list]
yield output, None, None, [create_msg("visualizer_clear", None)]
outy = start_tokens
ctime = 0
dur = 0
vel = 90
pitch = 0
channel = 0
for i in range(max(1, min(512, num_tok))):
inp = torch.LongTensor([outy]).cpu()
with ctx:
out = model.module.generate(inp,
1,
temperature=0.9,
return_prime=False,
verbose=False)
out0 = out[0].tolist()
outy.extend(out0)
ss1 = out0[0]
if 0 < ss1 < 256:
ctime += ss1 * 8
if 256 <= ss1 < 1280:
dur = ((ss1 - 256) // 8) * 32
vel = (((ss1 - 256) % 8) + 1) * 15
if 1280 <= ss1 < 2816:
channel = (ss1 - 1280) // 128
pitch = (ss1 - 1280) % 128
event = ['note', ctime, dur, channel, pitch, vel]
output[-1].append(event)
yield output, None, None, [create_msg("visualizer_append", event), create_msg("progress", [i + 1, num_tok])]
midi_data = TMIDIX.score2midi(output, text_encoding)
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f:
f.write(midi_data)
audio = synthesis(TMIDIX.score2opus(output), 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2')
print('Sample INTs', outy[:16])
print('-' * 70)
print('Last generated MIDI event', output[2][-1])
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (time.time() - start_time), 'sec')
yield output, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio), [
create_msg("visualizer_end", None)]
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
opt = parser.parse_args()
soundfont = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"]
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 385 # Models pad index
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.cpu()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_8134_steps_0.3745_loss_0.8736_acc.pth',
map_location='cpu'))
print('=' * 70)
model.eval()
ctx = torch.amp.autocast(device_type='cpu', dtype=torch.bfloat16)
print('Done!')
print('=' * 70)
load_javascript()
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n"
"SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n"
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)"
" for faster execution and endless generation"
)
gr.Markdown("## Upload your MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath")
input_num_tokens = gr.Slider(16, 512, value=256, label="Number of Tokens", info="Number of tokens to generate")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens],
[output_midi_title, output_midi_summary, output_audio, output_plot, output_midi])
app.queue(concurrency_count=1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |