File size: 9,829 Bytes
b6bb234
 
a3e0baa
b6bb234
2a68ddd
3fea55e
 
 
 
b6bb234
2a68ddd
b6bb234
2a68ddd
904cd6a
 
2a68ddd
 
904cd6a
2a68ddd
 
 
b6bb234
 
 
a3e0baa
 
29991e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e0baa
29991e1
7b0fbfe
 
606e959
 
29991e1
 
 
6c71f04
29991e1
 
6c71f04
11f0dcb
29991e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6bb234
29991e1
b6bb234
498b808
 
6c71f04
a3e0baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11f0dcb
3fea55e
606e959
a3e0baa
3fea55e
a3e0baa
 
11f0dcb
1c47239
3fea55e
11f0dcb
a3e0baa
0e630bf
 
 
 
 
 
 
11f0dcb
a3e0baa
11f0dcb
3fea55e
 
95675e7
a3e0baa
606e959
a3e0baa
 
 
 
 
 
 
 
606e959
a3e0baa
 
 
b6bb234
 
a3e0baa
b6bb234
 
 
a3e0baa
606e959
7b0fbfe
 
0731944
7b0fbfe
 
6c71f04
606e959
 
a3e0baa
 
 
 
 
 
6c71f04
 
 
606e959
6c71f04
 
 
b6bb234
 
 
 
bc18781
904cd6a
606e959
b6bb234
498b808
904cd6a
 
a3e0baa
498b808
a3e0baa
498b808
904cd6a
 
 
 
 
 
a3e0baa
498b808
 
a3e0baa
498b808
a3e0baa
 
0e630bf
a3e0baa
498b808
a3e0baa
 
 
0e630bf
 
b6bb234
6c71f04
a3e0baa
 
2a68ddd
b6bb234
904cd6a
 
2a68ddd
904cd6a
 
 
a3e0baa
904cd6a
a3e0baa
 
bc18781
 
 
2a68ddd
bc18781
2a68ddd
904cd6a
 
b6bb234
bc18781
 
 
 
 
 
 
29991e1
bc18781
 
2a68ddd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import argparse
import glob
import json
import os.path

import time
import datetime
from pytz import timezone

import torch

import gradio as gr

from x_transformer_1_23_2 import *
import random
import tqdm

inport midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt

in_space = os.getenv("SYSTEM") == "spaces"

# =================================================================================================

def generate_drums(notes_times,
                   max_drums_limit = 8,
                   num_memory_tokens = 4096,
                   temperature=0.9):

    x = torch.tensor([notes_times] * 1, dtype=torch.long, device='cpu')

    o = 128

    ncount = 0

    while o > 127 and ncount < max_drums_limit:
      with ctx:
        out = model.generate(x[-num_memory_tokens:],
                            1,
                            temperature=temperature,
                            return_prime=False,
                            verbose=False)

      o = out.tolist()[0][0]

      if 256 <= o < 384:
        ncount += 1

      if o > 127:
        x = torch.cat((x, out), 1)

    return x.tolist()[0][len(notes_times):]

# =================================================================================================

@torch.no_grad()
def GenerateMIDI(input_midi, input_num_tokens):
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = time.time()

    fn = os.path.basename(input_midi)
    fn1 = fn.split('.')[0]

    print('-' * 70)
    print('Input file name:', fn)
    print('Req num tok:', input_num_tokens)
    print('-' * 70)

    #===============================================================================
    # Raw single-track ms score
    
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    #=======================================================
    # PRE-PROCESSING
    
    #===============================================================================
    # Augmented enhanced score notes
    
    escore_notes = [e for e in escore_notes if e[3] != 9]
    
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes)
    
    patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes)
    
    dscore = TMIDIX.delta_score_notes(escore_notes, compress_timings=True, even_timings=True)
    
    cscore = TMIDIX.chordify_score([d[1:] for d in dscore])
    
    cscore_melody = [c[0] for c in cscore]
    
    comp_times = [0] + [t[1] for t in dscore if t[1] != 0]

    #===============================================================================

    print('Selected Improv sequence:')
    print(start_tokens)
    print('-' * 70)

    output_signature = 'Allegro Music Transformer'
    output_file_name = 'Allegro-Music-Transformer-Music-Composition'
    track_name = 'Project Los Angeles'
    list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
    number_of_ticks_per_quarter = 500
    text_encoding = 'ISO-8859-1'

    output_header = [number_of_ticks_per_quarter,
                     [['track_name', 0, bytes(output_signature, text_encoding)]]]

    patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
                  ['patch_change', 0, 1, list_of_MIDI_patches[1]],
                  ['patch_change', 0, 2, list_of_MIDI_patches[2]],
                  ['patch_change', 0, 3, list_of_MIDI_patches[3]],
                  ['patch_change', 0, 4, list_of_MIDI_patches[4]],
                  ['patch_change', 0, 5, list_of_MIDI_patches[5]],
                  ['patch_change', 0, 6, list_of_MIDI_patches[6]],
                  ['patch_change', 0, 7, list_of_MIDI_patches[7]],
                  ['patch_change', 0, 8, list_of_MIDI_patches[8]],
                  ['patch_change', 0, 9, list_of_MIDI_patches[9]],
                  ['patch_change', 0, 10, list_of_MIDI_patches[10]],
                  ['patch_change', 0, 11, list_of_MIDI_patches[11]],
                  ['patch_change', 0, 12, list_of_MIDI_patches[12]],
                  ['patch_change', 0, 13, list_of_MIDI_patches[13]],
                  ['patch_change', 0, 14, list_of_MIDI_patches[14]],
                  ['patch_change', 0, 15, list_of_MIDI_patches[15]],
                  ['track_name', 0, bytes(track_name, text_encoding)]]

    output = output_header + [patch_list]

    yield output, None, None, [create_msg("visualizer_clear", None)]

    outy = start_tokens
    
    ctime = 0
    dur = 0
    vel = 90
    pitch = 0
    channel = 0

    for i in range(max(1, min(512, num_tok))):
        
        inp = torch.LongTensor([outy]).cpu()

        with ctx:
        
            out = model.module.generate(inp,
                                        1,
                                        temperature=0.9,
                                        return_prime=False,
                                        verbose=False)

        out0 = out[0].tolist()
        outy.extend(out0)
        
        ss1 = out0[0]

        if 0 < ss1 < 256:
            ctime += ss1 * 8

        if 256 <= ss1 < 1280:
            dur = ((ss1 - 256) // 8) * 32
            vel = (((ss1 - 256) % 8) + 1) * 15

        if 1280 <= ss1 < 2816:
            channel = (ss1 - 1280) // 128
            pitch = (ss1 - 1280) % 128
            event = ['note', ctime, dur, channel, pitch, vel]
            output[-1].append(event)

            yield output, None, None, [create_msg("visualizer_append", event), create_msg("progress", [i + 1, num_tok])]

    midi_data = TMIDIX.score2midi(output, text_encoding)

    with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f:
        f.write(midi_data)

    audio = synthesis(TMIDIX.score2opus(output), 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2')
    
    print('Sample INTs', outy[:16])
    print('-' * 70)
    print('Last generated MIDI event', output[2][-1])
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (time.time() - start_time), 'sec')
    
    yield output, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio), [
        create_msg("visualizer_end", None)]

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)
    
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--port", type=int, default=7860, help="gradio server port")
    opt = parser.parse_args()

    soundfont = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"]
    
    print('Loading model...')

    SEQ_LEN = 8192 # Models seq len
    PAD_IDX = 385 # Models pad index

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.cpu()
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_8134_steps_0.3745_loss_0.8736_acc.pth',
                   map_location='cpu'))
    print('=' * 70)

    model.eval()

    ctx = torch.amp.autocast(device_type='cpu', dtype=torch.bfloat16)

    print('Done!')
    print('=' * 70)

    load_javascript()
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n"
            "SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n"
            "Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n"
            "[Open In Colab]"
            "(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)"
            " for faster execution and endless generation"
        )
        gr.Markdown("## Upload your MIDI")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath")
        input_num_tokens = gr.Slider(16, 512, value=256, label="Number of Tokens", info="Number of tokens to generate")
        
        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        
        run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens],
                                  [output_midi_title, output_midi_summary, output_audio, output_plot, output_midi])
        
        app.queue(concurrency_count=1).launch(server_port=opt.port, share=opt.share, inbrowser=True)