File size: 10,308 Bytes
b6bb234
2a68ddd
bbd3dd5
3fea55e
 
 
b6bb234
2a68ddd
c6eecf2
b6bb234
2a68ddd
904cd6a
 
2a68ddd
 
d5a2f0a
2a68ddd
 
 
b6bb234
 
0fd605a
29991e1
9059539
 
d53d31a
7b0fbfe
 
bbd3dd5
606e959
efd6b77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03b17e5
29991e1
 
1699c24
5adf3f3
6c71f04
29991e1
e618966
6c71f04
11f0dcb
29991e1
 
 
03b17e5
29991e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed33b6
b6bb234
29991e1
b6bb234
e618966
 
 
 
 
a3e0baa
acc12c6
 
97c5fc5
 
0fd605a
 
835a931
0fd605a
e618966
0fd605a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da1fa1
0fd605a
34d3b62
a3e0baa
e618966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca35375
e618966
 
 
 
ca35375
 
 
e618966
 
 
 
 
 
 
 
 
 
ca35375
 
 
 
 
 
 
 
e618966
 
 
15acae7
e618966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3e0baa
e618966
b6bb234
e618966
bda89a8
 
e618966
 
d4eee16
a3e0baa
e618966
 
 
 
 
b6bb234
e618966
606e959
7b0fbfe
 
6c71f04
bbd3dd5
58827a6
 
606e959
4d5783c
a3e0baa
 
 
 
6c71f04
 
 
606e959
6c71f04
 
bc18781
ec88a9f
efd6b77
2a68ddd
b6bb234
904cd6a
 
2a68ddd
904cd6a
 
 
a3e0baa
904cd6a
a3e0baa
 
5351f39
bc18781
7e5f9af
71585b1
bc18781
2a68ddd
904cd6a
 
b6bb234
bc18781
 
 
 
 
 
5351f39
29991e1
e618966
5351f39
 
8ac01e3
 
 
 
 
 
 
 
 
 
2ab3f33
5351f39
 
8ac01e3
5351f39
bc18781
9f78380
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os.path

import time as reqtime
import datetime
from pytz import timezone

import torch

import spaces
import gradio as gr

from x_transformer_1_23_2 import *
import random
import tqdm

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt

in_space = os.getenv("SYSTEM") == "spaces"
         
# =================================================================================================
                       
@spaces.GPU
def GenerateDrums(input_midi, input_num_tokens):
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('Loading model...')

    SEQ_LEN = 8192 # Models seq len
    PAD_IDX = 393 # Models pad index
    DEVICE = 'cuda' # 'cuda'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_VER3_VEL_11222_steps_0.5749_loss_0.8085_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.float16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    fn = os.path.basename(input_midi.name)
    fn1 = fn.split('.')[0]

    input_num_tokens = max(4, min(256, input_num_tokens))

    print('-' * 70)
    print('Input file name:', fn)
    print('Req num toks:', input_num_tokens)
    print('-' * 70)

    #===============================================================================
    # Raw single-track ms score
    
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    #=======================================================
    # PRE-PROCESSING
    
    #===============================================================================
    # Augmented enhanced score notes
    
    escore_notes = [e for e in escore_notes if e[3] != 9]
    
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes)
    
    patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes)
    
    dscore = TMIDIX.delta_score_notes(escore_notes, compress_timings=True, even_timings=True)
    
    cscore = TMIDIX.chordify_score([d[1:] for d in dscore])
    
    cscore_melody = [c[0] for c in cscore]
    
    comp_times = [0] + [t[1] for t in dscore if t[1] != 0]

    #===============================================================================

    print('=' * 70)
    
    print('Sample output events', escore_notes[:5])
    print('=' * 70)
    print('Generating...')

    output = []

    temperature=0.9
    max_drums_limit=8
    num_memory_tokens=4096

    for c in comp_times[:input_num_tokens]:
        output.append(c)
    
        x = torch.tensor([output] * 1, dtype=torch.long, device=DEVICE)
        
        o = 128
        
        ncount = 0
        
        while o > 127 and ncount < max_drums_limit:
          with ctx:
            out = model.generate(x[-num_memory_tokens:],
                                1,
                                temperature=temperature,
                                return_prime=False,
                                verbose=False)
        
          o = out.tolist()[0][0]
        
          if 256 <= o < 384:
            ncount += 1
        
          if o > 127:
            x = torch.cat((x, out), 1)
        
        x_output = x.tolist()[0][len(output):]
        
        output.extend(x_output)

    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', output[:12])
    print('=' * 70)
    
    if len(output) != 0:
    
        song = output
        song_f = []
    
        time = 0
        dtime = 0
        ntime = 0
        dur = 32
        vel = 90
        vels = [100, 120]
        pitch = 0
        channel = 0
    
        idx = 0
    
        for ss in song:
    
            if 0 <= ss < 128:

                time += cscore[idx][0][0] * 32
    
                for c in cscore[idx]:
                  song_f.append(['note', time, c[1] * 32, c[2], c[3], c[4], c[5]])
                    
                dtime = time
                
                idx += 1
    
            if 128 <= ss < 256:
    
                dtime += (ss-128) * 32
    
            if 256 <= ss < 384:
    
                pitch = (ss-256)
    
            if 384 <= ss < 393:
            
                vel = ((ss-384)+1) * 15
            
                if dtime == time:
                    song_f.append(['note', time, dur, 9, pitch, vel, 128])
                else:
                    song_f.append(['note', dtime, dur, 9, pitch, vel, 128])
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Ultimate Drums Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', '')
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    print([output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
    
    return [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
   
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n"
            "SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n"
            "Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n"
            "[Open In Colab]"
            "(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)"
            " for faster execution and endless generation"
        )
        gr.Markdown("## Upload your MIDI or select a sample example MIDI")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        input_num_tokens = gr.Slider(4, 32, value=16, label="Number of Tokens", info="Number of tokens to generate")
        
        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])


        run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        gr.Examples(
            [["Ultimate-Drums-Transformer-Melody-Seed-1.mid", 128], 
             ["Ultimate-Drums-Transformer-Melody-Seed-2.mid", 128], 
             ["Ultimate-Drums-Transformer-Melody-Seed-3.mid", 128],
             ["Ultimate-Drums-Transformer-Melody-Seed-4.mid", 128],
             ["Ultimate-Drums-Transformer-Melody-Seed-5.mid", 128],
             ["Ultimate-Drums-Transformer-Melody-Seed-6.mid", 128],
             ["Ultimate-Drums-Transformer-MI-Seed-1.mid", 128],
             ["Ultimate-Drums-Transformer-MI-Seed-2.mid", 128],
             ["Ultimate-Drums-Transformer-MI-Seed-3.mid", 128],
             ["Ultimate-Drums-Transformer-MI-Seed-4.mid", 128]],
            [input_midi, input_num_tokens],
            [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
            GenerateDrums,
            cache_examples=True,
        )
        
        app.queue().launch()