File size: 10,308 Bytes
b6bb234 2a68ddd bbd3dd5 3fea55e b6bb234 2a68ddd c6eecf2 b6bb234 2a68ddd 904cd6a 2a68ddd d5a2f0a 2a68ddd b6bb234 0fd605a 29991e1 9059539 d53d31a 7b0fbfe bbd3dd5 606e959 efd6b77 03b17e5 29991e1 1699c24 5adf3f3 6c71f04 29991e1 e618966 6c71f04 11f0dcb 29991e1 03b17e5 29991e1 8ed33b6 b6bb234 29991e1 b6bb234 e618966 a3e0baa acc12c6 97c5fc5 0fd605a 835a931 0fd605a e618966 0fd605a 9da1fa1 0fd605a 34d3b62 a3e0baa e618966 ca35375 e618966 ca35375 e618966 ca35375 e618966 15acae7 e618966 a3e0baa e618966 b6bb234 e618966 bda89a8 e618966 d4eee16 a3e0baa e618966 b6bb234 e618966 606e959 7b0fbfe 6c71f04 bbd3dd5 58827a6 606e959 4d5783c a3e0baa 6c71f04 606e959 6c71f04 bc18781 ec88a9f efd6b77 2a68ddd b6bb234 904cd6a 2a68ddd 904cd6a a3e0baa 904cd6a a3e0baa 5351f39 bc18781 7e5f9af 71585b1 bc18781 2a68ddd 904cd6a b6bb234 bc18781 5351f39 29991e1 e618966 5351f39 8ac01e3 2ab3f33 5351f39 8ac01e3 5351f39 bc18781 9f78380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateDrums(input_midi, input_num_tokens):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 393 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_VER3_VEL_11222_steps_0.5749_loss_0.8085_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
input_num_tokens = max(4, min(256, input_num_tokens))
print('-' * 70)
print('Input file name:', fn)
print('Req num toks:', input_num_tokens)
print('-' * 70)
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
escore_notes = [e for e in escore_notes if e[3] != 9]
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes)
patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes)
dscore = TMIDIX.delta_score_notes(escore_notes, compress_timings=True, even_timings=True)
cscore = TMIDIX.chordify_score([d[1:] for d in dscore])
cscore_melody = [c[0] for c in cscore]
comp_times = [0] + [t[1] for t in dscore if t[1] != 0]
#===============================================================================
print('=' * 70)
print('Sample output events', escore_notes[:5])
print('=' * 70)
print('Generating...')
output = []
temperature=0.9
max_drums_limit=8
num_memory_tokens=4096
for c in comp_times[:input_num_tokens]:
output.append(c)
x = torch.tensor([output] * 1, dtype=torch.long, device=DEVICE)
o = 128
ncount = 0
while o > 127 and ncount < max_drums_limit:
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 256 <= o < 384:
ncount += 1
if o > 127:
x = torch.cat((x, out), 1)
x_output = x.tolist()[0][len(output):]
output.extend(x_output)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output[:12])
print('=' * 70)
if len(output) != 0:
song = output
song_f = []
time = 0
dtime = 0
ntime = 0
dur = 32
vel = 90
vels = [100, 120]
pitch = 0
channel = 0
idx = 0
for ss in song:
if 0 <= ss < 128:
time += cscore[idx][0][0] * 32
for c in cscore[idx]:
song_f.append(['note', time, c[1] * 32, c[2], c[3], c[4], c[5]])
dtime = time
idx += 1
if 128 <= ss < 256:
dtime += (ss-128) * 32
if 256 <= ss < 384:
pitch = (ss-256)
if 384 <= ss < 393:
vel = ((ss-384)+1) * 15
if dtime == time:
song_f.append(['note', time, dur, 9, pitch, vel, 128])
else:
song_f.append(['note', dtime, dur, 9, pitch, vel, 128])
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Drums Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
print([output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
return [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n"
"SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n"
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)"
" for faster execution and endless generation"
)
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_tokens = gr.Slider(4, 32, value=16, label="Number of Tokens", info="Number of tokens to generate")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Ultimate-Drums-Transformer-Melody-Seed-1.mid", 128],
["Ultimate-Drums-Transformer-Melody-Seed-2.mid", 128],
["Ultimate-Drums-Transformer-Melody-Seed-3.mid", 128],
["Ultimate-Drums-Transformer-Melody-Seed-4.mid", 128],
["Ultimate-Drums-Transformer-Melody-Seed-5.mid", 128],
["Ultimate-Drums-Transformer-Melody-Seed-6.mid", 128],
["Ultimate-Drums-Transformer-MI-Seed-1.mid", 128],
["Ultimate-Drums-Transformer-MI-Seed-2.mid", 128],
["Ultimate-Drums-Transformer-MI-Seed-3.mid", 128],
["Ultimate-Drums-Transformer-MI-Seed-4.mid", 128]],
[input_midi, input_num_tokens],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
GenerateDrums,
cache_examples=True,
)
app.queue().launch() |