|
import argparse |
|
import glob |
|
import json |
|
import os.path |
|
|
|
import time |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
import tqdm |
|
|
|
inport midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
|
|
def generate_drums(notes_times, |
|
max_drums_limit = 8, |
|
num_memory_tokens = 4096, |
|
temperature=0.9): |
|
|
|
x = torch.tensor([notes_times] * 1, dtype=torch.long, device='cpu') |
|
|
|
o = 128 |
|
|
|
ncount = 0 |
|
|
|
while o > 127 and ncount < max_drums_limit: |
|
with ctx: |
|
out = model.generate(x[-num_memory_tokens:], |
|
1, |
|
temperature=temperature, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
o = out.tolist()[0][0] |
|
|
|
if 256 <= o < 384: |
|
ncount += 1 |
|
|
|
if o > 127: |
|
x = torch.cat((x, out), 1) |
|
|
|
return x.tolist()[0][len(notes_times):] |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def GenerateMIDI(input_midi, input_num_tokens): |
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = time.time() |
|
|
|
fn = os.path.basename(input_midi) |
|
fn1 = fn.split('.')[0] |
|
|
|
print('-' * 70) |
|
print('Input file name:', fn) |
|
print('Req num tok:', input_num_tokens) |
|
print('-' * 70) |
|
|
|
|
|
|
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(input_midi) |
|
|
|
|
|
|
|
|
|
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
escore_notes = [e for e in escore_notes if e[3] != 9] |
|
|
|
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes) |
|
|
|
patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes) |
|
|
|
dscore = TMIDIX.delta_score_notes(escore_notes, compress_timings=True, even_timings=True) |
|
|
|
cscore = TMIDIX.chordify_score([d[1:] for d in dscore]) |
|
|
|
cscore_melody = [c[0] for c in cscore] |
|
|
|
comp_times = [0] + [t[1] for t in dscore if t[1] != 0] |
|
|
|
|
|
|
|
print('Selected Improv sequence:') |
|
print(start_tokens) |
|
print('-' * 70) |
|
|
|
output_signature = 'Allegro Music Transformer' |
|
output_file_name = 'Allegro-Music-Transformer-Music-Composition' |
|
track_name = 'Project Los Angeles' |
|
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0] |
|
number_of_ticks_per_quarter = 500 |
|
text_encoding = 'ISO-8859-1' |
|
|
|
output_header = [number_of_ticks_per_quarter, |
|
[['track_name', 0, bytes(output_signature, text_encoding)]]] |
|
|
|
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], |
|
['patch_change', 0, 1, list_of_MIDI_patches[1]], |
|
['patch_change', 0, 2, list_of_MIDI_patches[2]], |
|
['patch_change', 0, 3, list_of_MIDI_patches[3]], |
|
['patch_change', 0, 4, list_of_MIDI_patches[4]], |
|
['patch_change', 0, 5, list_of_MIDI_patches[5]], |
|
['patch_change', 0, 6, list_of_MIDI_patches[6]], |
|
['patch_change', 0, 7, list_of_MIDI_patches[7]], |
|
['patch_change', 0, 8, list_of_MIDI_patches[8]], |
|
['patch_change', 0, 9, list_of_MIDI_patches[9]], |
|
['patch_change', 0, 10, list_of_MIDI_patches[10]], |
|
['patch_change', 0, 11, list_of_MIDI_patches[11]], |
|
['patch_change', 0, 12, list_of_MIDI_patches[12]], |
|
['patch_change', 0, 13, list_of_MIDI_patches[13]], |
|
['patch_change', 0, 14, list_of_MIDI_patches[14]], |
|
['patch_change', 0, 15, list_of_MIDI_patches[15]], |
|
['track_name', 0, bytes(track_name, text_encoding)]] |
|
|
|
output = output_header + [patch_list] |
|
|
|
yield output, None, None, [create_msg("visualizer_clear", None)] |
|
|
|
outy = start_tokens |
|
|
|
ctime = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
for i in range(max(1, min(512, num_tok))): |
|
|
|
inp = torch.LongTensor([outy]).cpu() |
|
|
|
with ctx: |
|
|
|
out = model.module.generate(inp, |
|
1, |
|
temperature=0.9, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
out0 = out[0].tolist() |
|
outy.extend(out0) |
|
|
|
ss1 = out0[0] |
|
|
|
if 0 < ss1 < 256: |
|
ctime += ss1 * 8 |
|
|
|
if 256 <= ss1 < 1280: |
|
dur = ((ss1 - 256) // 8) * 32 |
|
vel = (((ss1 - 256) % 8) + 1) * 15 |
|
|
|
if 1280 <= ss1 < 2816: |
|
channel = (ss1 - 1280) // 128 |
|
pitch = (ss1 - 1280) % 128 |
|
event = ['note', ctime, dur, channel, pitch, vel] |
|
output[-1].append(event) |
|
|
|
yield output, None, None, [create_msg("visualizer_append", event), create_msg("progress", [i + 1, num_tok])] |
|
|
|
midi_data = TMIDIX.score2midi(output, text_encoding) |
|
|
|
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f: |
|
f.write(midi_data) |
|
|
|
audio = synthesis(TMIDIX.score2opus(output), 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2') |
|
|
|
print('Sample INTs', outy[:16]) |
|
print('-' * 70) |
|
print('Last generated MIDI event', output[2][-1]) |
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (time.time() - start_time), 'sec') |
|
|
|
yield output, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio), [ |
|
create_msg("visualizer_end", None)] |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
parser.add_argument("--port", type=int, default=7860, help="gradio server port") |
|
opt = parser.parse_args() |
|
|
|
soundfont = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"] |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 8192 |
|
PAD_IDX = 385 |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, attn_flash = True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) |
|
|
|
model.cpu() |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_8134_steps_0.3745_loss_0.8736_acc.pth', |
|
map_location='cpu')) |
|
print('=' * 70) |
|
|
|
model.eval() |
|
|
|
ctx = torch.amp.autocast(device_type='cpu', dtype=torch.bfloat16) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
load_javascript() |
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n" |
|
"SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n" |
|
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)" |
|
" for faster execution and endless generation" |
|
) |
|
gr.Markdown("## Upload your MIDI") |
|
|
|
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath") |
|
input_num_tokens = gr.Slider(16, 512, value=256, label="Number of Tokens", info="Number of tokens to generate") |
|
|
|
run_btn = gr.Button("generate", variant="primary") |
|
|
|
gr.Markdown("## Generation results") |
|
|
|
output_midi_title = gr.Textbox(label="Output MIDI title") |
|
output_midi_summary = gr.Textbox(label="Output MIDI summary") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
|
|
run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens], |
|
[output_midi_title, output_midi_summary, output_audio, output_plot, output_midi]) |
|
|
|
app.queue(concurrency_count=1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |