Spaces:
Sleeping
Sleeping
File size: 13,520 Bytes
421b068 ca1279e f327376 810f00f 44cdaf2 810f00f 44cdaf2 777edd0 88d7725 806dbf3 d51b1c2 88d7725 ae0bcb8 7d529e0 734af25 44cdaf2 810f00f ca1279e 810f00f 734af25 f327376 ae0bcb8 ca1279e f327376 777edd0 f327376 810f00f f327376 ca1279e 45f97ba 734af25 810f00f ca1279e 421b068 44cdaf2 806dbf3 45f97ba 44cdaf2 421b068 7d529e0 421b068 f327376 7d529e0 45f97ba f327376 45f97ba f327376 45f97ba 6d0709a 44cdaf2 45f97ba fb98b30 810f00f 45f97ba 777edd0 810f00f 44cdaf2 810f00f 44cdaf2 810f00f 44cdaf2 777edd0 810f00f 777edd0 810f00f 7d529e0 ae0bcb8 806dbf3 ae0bcb8 88d7725 45f97ba 88d7725 ae0bcb8 806dbf3 ae0bcb8 806dbf3 ae0bcb8 d51b1c2 ae0bcb8 88d7725 45f97ba 88d7725 ae0bcb8 88d7725 ae0bcb8 88d7725 ae0bcb8 88d7725 ae0bcb8 88d7725 ae0bcb8 88d7725 45f97ba ae0bcb8 88d7725 ae0bcb8 45f97ba 88d7725 45f97ba 810f00f 44cdaf2 810f00f 777edd0 f327376 777edd0 810f00f ca1279e f327376 810f00f 777edd0 ca1279e 44cdaf2 810f00f 806dbf3 777edd0 9f3ff28 806dbf3 777edd0 e7688e5 777edd0 88d7725 777edd0 88d7725 777edd0 fb98b30 e7688e5 fb98b30 777edd0 45f97ba 777edd0 45f97ba 777edd0 ae0bcb8 777edd0 ae0bcb8 777edd0 9f3ff28 45f97ba 421b068 7d529e0 ae0bcb8 7af3e0d ae0bcb8 9f3ff28 fb98b30 ae0bcb8 9f3ff28 421b068 9f3ff28 ae0bcb8 fb98b30 ae0bcb8 88d7725 ae0bcb8 88d7725 9f3ff28 88d7725 777edd0 ae0bcb8 777edd0 ae0bcb8 806dbf3 ae0bcb8 806dbf3 ae0bcb8 88d7725 ae0bcb8 88d7725 45f97ba ae0bcb8 2d53b10 7d529e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import gradio as gr
from gradio_huggingfacehub_search import HuggingfaceHubSearch
import nbformat as nbf
from huggingface_hub import HfApi
from httpx import Client
import logging
from huggingface_hub import InferenceClient
import json
import re
import pandas as pd
from gradio.data_classes import FileData
from utils.prompts import (
generate_mapping_prompt,
generate_user_prompt,
generate_rag_system_prompt,
generate_eda_system_prompt,
generate_embedding_system_prompt,
)
from dotenv import load_dotenv
import os
"""
TODOs:
- Need feedback on the output commands to validate if operations are appropiate to data types
- Refactor
- Make the notebook generation more dynamic, add loading components to do not freeze the UI
- Fix errors:
- When generating output
- When parsing output
- When pushing notebook
- Add target tasks to choose for the notebook:
- Exploratory data analysis
- Auto training
- RAG
- etc.
- Enable 'generate notebook' button only if dataset is available and supports library
- First get compatible-libraries and let user choose the library
"""
# Configuration
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
assert (
NOTEBOOKS_REPOSITORY is not None
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables"
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"}
client = Client(headers=HEADERS)
inference_client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
logging.basicConfig(level=logging.INFO)
def get_compatible_libraries(dataset: str):
try:
response = client.get(
f"{BASE_DATASETS_SERVER_URL}/compatible-libraries?dataset={dataset}"
)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching compatible libraries: {e}")
raise
def create_notebook_file(cell_commands, notebook_name):
nb = nbf.v4.new_notebook()
nb["cells"] = [
nbf.v4.new_code_cell(
cmd["source"]
if isinstance(cmd["source"], str)
else "\n".join(cmd["source"])
)
if cmd["cell_type"] == "code"
else nbf.v4.new_markdown_cell(cmd["source"])
for cmd in cell_commands
]
with open(notebook_name, "w") as f:
nbf.write(nb, f)
logging.info(f"Notebook {notebook_name} created successfully")
def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int):
try:
resp = client.get(
f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}"
)
resp.raise_for_status()
content = resp.json()
rows = content["rows"]
rows = [row["row"] for row in rows]
first_rows_df = pd.DataFrame.from_dict(rows).sample(frac=1).head(limit)
features = content["features"]
features_dict = {feature["name"]: feature["type"] for feature in features}
return features_dict, first_rows_df
except Exception as e:
logging.error(f"Error fetching first rows: {e}")
raise
def get_txt_from_output(output):
extracted_text = extract_content_from_output(output)
logging.info("--> Extracted text between json block")
logging.info(extracted_text)
content = json.loads(extracted_text)
return content
def extract_content_from_output(output):
patterns = [r"`json(.*?)`", r"```(.*?)```"]
for pattern in patterns:
match = re.search(pattern, output, re.DOTALL)
if match:
return match.group(1)
try:
index = output.index("```json")
logging.info(f"Index: {index}")
return output[index + 7 :]
except ValueError:
logging.error("Unable to generate Jupyter notebook.")
raise
def content_from_output(output):
pattern = r"`json(.*?)`"
match = re.search(pattern, output, re.DOTALL)
if not match:
pattern = r"```(.*?)```"
match = re.search(pattern, output, re.DOTALL)
if not match:
try:
index = output.index("```json")
logging.info(f"Index: {index}")
return output[index + 7 :]
except:
pass
raise Exception("Unable to generate jupyter notebook.")
return match.group(1)
def generate_eda_cells(dataset_id):
for messages in generate_cells(dataset_id, generate_eda_system_prompt, "eda"):
yield messages, None # Keep button hidden
yield (
messages,
f"{dataset_id.replace('/', '-')}-eda.ipynb",
)
def generate_rag_cells(dataset_id):
for messages in generate_cells(dataset_id, generate_rag_system_prompt, "rag"):
yield messages, None # Keep button hidden
yield (
messages,
f"{dataset_id.replace('/', '-')}-rag.ipynb",
)
def generate_embedding_cells(dataset_id):
for messages in generate_cells(
dataset_id, generate_embedding_system_prompt, "embedding"
):
yield messages, None # Keep button hidden
yield (
messages,
f"{dataset_id.replace('/', '-')}-embedding.ipynb",
)
def _push_to_hub(
history,
dataset_id,
notebook_file,
):
logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}")
notebook_name = notebook_file.split("/")[-1]
api = HfApi(token=HF_TOKEN)
try:
logging.info(f"About to push {notebook_file} - {dataset_id}")
api.upload_file(
path_or_fileobj=notebook_file,
path_in_repo=notebook_name,
repo_id=NOTEBOOKS_REPOSITORY,
repo_type="dataset",
)
link = f"https://huggingface.co/datasets/{NOTEBOOKS_REPOSITORY}/blob/main/{notebook_name}"
logging.info(f"Notebook pushed to hub: {link}")
yield history + [
gr.ChatMessage(
role="user",
content=f"[{notebook_name}]({link})",
)
]
except Exception as e:
logging.info("Failed to push notebook", e)
yield history + [gr.ChatMessage(role="assistant", content=e)]
def generate_cells(dataset_id, prompt_fn, notebook_type="eda"):
try:
libraries = get_compatible_libraries(dataset_id)
except Exception as err:
gr.Error("Unable to retrieve dataset info from HF Hub.")
logging.error(f"Failed to fetch compatible libraries: {err}")
return []
if not libraries:
gr.Error("Dataset not compatible with pandas library.")
logging.error(f"Dataset not compatible with pandas library")
return gr.File(visible=False), gr.Row.update(visible=False)
pandas_library = next(
(lib for lib in libraries.get("libraries", []) if lib["library"] == "pandas"),
None,
)
if not pandas_library:
gr.Error("Dataset not compatible with pandas library.")
return []
first_config_loading_code = pandas_library["loading_codes"][0]
first_code = first_config_loading_code["code"]
first_config = first_config_loading_code["config_name"]
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
prompt = generate_user_prompt(
features, df.head(5).to_dict(orient="records"), first_code
)
messages = [gr.ChatMessage(role="user", content=prompt)]
yield messages + [gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")]
prompt_messages = [
{"role": "system", "content": prompt_fn()},
{"role": "user", "content": prompt},
]
output = inference_client.chat_completion(
messages=prompt_messages,
stream=True,
max_tokens=2500,
top_p=0.8,
seed=42,
)
generated_text = ""
current_line = ""
for chunk in output:
current_line += chunk.choices[0].delta.content
if current_line.endswith("\n"):
generated_text += current_line
messages.append(gr.ChatMessage(role="assistant", content=current_line))
current_line = ""
yield messages
yield messages
logging.info("---> Notebook markdown code output")
logging.info(generated_text)
retries = 0
retry_limit = 3
while retries < retry_limit:
try:
formatted_prompt = generate_mapping_prompt(generated_text)
prompt_messages = [{"role": "user", "content": formatted_prompt}]
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ _Generating notebook..._")
]
output = inference_client.chat_completion(
messages=prompt_messages,
stream=False,
max_tokens=2500,
top_p=0.8,
seed=42,
)
cells_txt = output.choices[0].message.content
logging.info(f"---> Mapping to json output attempt {retries}")
logging.info(cells_txt)
commands = get_txt_from_output(cells_txt)
break
except Exception as e:
logging.warn("Error when parsing output, retrying ..")
retries += 1
if retries == retry_limit:
logging.error(f"Unable to parse output after {retry_limit} retries")
gr.Error("Unable to generate notebook. Try again please")
raise e
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
commands.insert(
0,
{
"cell_type": "code",
"source": f'from IPython.display import HTML\n\ndisplay(HTML("{html_code}"))',
},
)
commands.insert(0, {"cell_type": "markdown", "source": "# Dataset Viewer"})
notebook_name = f"{dataset_id.replace('/', '-')}-{notebook_type}.ipynb"
create_notebook_file(commands, notebook_name=notebook_name)
messages.append(
gr.ChatMessage(role="user", content="See the generated notebook on the Hub")
)
yield messages
yield from _push_to_hub(messages, dataset_id, notebook_name)
def coming_soon_message():
return gr.Info("Coming soon")
def handle_example(example, button_action):
return button_action(example)
with gr.Blocks(fill_width=True) as demo:
gr.Markdown("# 🤖 Dataset notebook creator 🕵️")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
text_input = gr.Textbox(label="Suggested notebook type", visible=False)
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
value="",
)
dataset_samples = gr.Examples(
examples=[
[
"infinite-dataset-hub/WorldPopCounts",
"Try this dataset for Exploratory Data Analysis",
],
[
"infinite-dataset-hub/GlobaleCuisineRecipes",
"Try this dataset for Embeddings generation",
],
[
"infinite-dataset-hub/GlobalBestSellersSummaries",
"Try this dataset for RAG generation",
],
],
inputs=[dataset_name, text_input],
cache_examples=False,
)
@gr.render(inputs=dataset_name)
def embed(name):
if not name:
return gr.Markdown("### No dataset provided")
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
frameborder="0"
width="100%"
height="350px"
></iframe>
"""
return gr.HTML(value=html_code)
with gr.Row():
generate_eda_btn = gr.Button("Exploratory Data Analysis")
generate_embedding_btn = gr.Button("Embeddings")
generate_rag_btn = gr.Button("RAG")
generate_training_btn = gr.Button(
"Training - Coming soon", interactive=False
)
with gr.Column(scale=1):
with gr.Row():
chatbot = gr.Chatbot(
label="Results",
type="messages",
height=650,
avatar_images=(
None,
None,
),
)
notebook_file = gr.File(visible=False)
generate_eda_btn.click(
generate_eda_cells,
inputs=[dataset_name],
outputs=[chatbot, notebook_file],
)
generate_embedding_btn.click(
generate_embedding_cells,
inputs=[dataset_name],
outputs=[chatbot, notebook_file],
)
generate_rag_btn.click(
generate_rag_cells,
inputs=[dataset_name],
outputs=[chatbot, notebook_file],
)
generate_training_btn.click(coming_soon_message, inputs=[], outputs=[])
demo.launch()
|