Spaces:
Runtime error
Runtime error
File size: 2,165 Bytes
8c72189 4c6f70e 8c72189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "JackismyShephard/whisper-medium.en-finetuned-gtzan"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="audio-classification",
model=MODEL_NAME,
device=device,
)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
return outputs
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
#TODO not sure we need list here
inputs=[
#TODO not sure we need '.inputs.'
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
#TODO add inputs source upload here, if possible?
#TODO add inputs source youtube here, if possible?
],
outputs="label", #TODO not sure about this
layout="horizontal", #TODO not sure we need this
theme="huggingface",
title="Classify Genre of Music",
description=(
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files"
" of arbitrary length."
),
examples=[
["./example.flac"],
],
cache_examples=True,
allow_flagging="never",
)
mic_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
],
outputs="label", #TODO not sure about this
layout="horizontal",
theme="huggingface",
title="Classify Genre of Music",
description=(
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files"
" of arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([file_transcribe, mic_transcribe], ["Classify Audio File", "classify Microphone input"])
demo.launch(enable_queue=True) |