Spaces:
Runtime error
Runtime error
File size: 1,068 Bytes
8c72189 e515109 970b919 e515109 c1ce43e d1d5581 8c72189 c1ce43e 8c72189 c1ce43e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "JackismyShephard/whisper-medium.en-finetuned-gtzan"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="audio-classification",
model=MODEL_NAME,
device=device,
)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
return outputs
demo = gr.Interface(
fn=classify_audio,
inputs= gr.Audio(sources=["upload", "microphone"], label="Audio file", type="filepath"),
outputs=gr.Label(),
title="Music Genre Classification",
description=(
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files"
" of arbitrary length."
),
examples="./examples",
cache_examples=True,
allow_flagging="never",
)
demo.launch() |