MUSIC_MAJOR / app.py
JackismyShephard's picture
update application examples
4c6f70e
raw
history blame
2.17 kB
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "JackismyShephard/whisper-medium.en-finetuned-gtzan"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="audio-classification",
model=MODEL_NAME,
device=device,
)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
return outputs
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
#TODO not sure we need list here
inputs=[
#TODO not sure we need '.inputs.'
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
#TODO add inputs source upload here, if possible?
#TODO add inputs source youtube here, if possible?
],
outputs="label", #TODO not sure about this
layout="horizontal", #TODO not sure we need this
theme="huggingface",
title="Classify Genre of Music",
description=(
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files"
" of arbitrary length."
),
examples=[
["./example.flac"],
],
cache_examples=True,
allow_flagging="never",
)
mic_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
],
outputs="label", #TODO not sure about this
layout="horizontal",
theme="huggingface",
title="Classify Genre of Music",
description=(
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files"
" of arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([file_transcribe, mic_transcribe], ["Classify Audio File", "classify Microphone input"])
demo.launch(enable_queue=True)