Spaces:
Runtime error
Runtime error
import torch | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import gradio as gr | |
MODEL_NAME = "JackismyShephard/whisper-medium.en-finetuned-gtzan" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="audio-classification", | |
model=MODEL_NAME, | |
device=device, | |
) | |
def classify_audio(filepath): | |
preds = pipe(filepath) | |
outputs = {} | |
for p in preds: | |
outputs[p["label"]] = p["score"] | |
return outputs | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
#TODO not sure we need list here | |
inputs=[ | |
#TODO not sure we need '.inputs.' | |
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), | |
#TODO add inputs source upload here, if possible? | |
#TODO add inputs source youtube here, if possible? | |
], | |
outputs="label", #TODO not sure about this | |
layout="horizontal", #TODO not sure we need this | |
theme="huggingface", | |
title="Classify Genre of Music", | |
description=( | |
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files" | |
" of arbitrary length." | |
), | |
examples=[ | |
["./example.flac"], | |
], | |
cache_examples=True, | |
allow_flagging="never", | |
) | |
mic_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
], | |
outputs="label", #TODO not sure about this | |
layout="horizontal", | |
theme="huggingface", | |
title="Classify Genre of Music", | |
description=( | |
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe, mic_transcribe], ["Classify Audio File", "classify Microphone input"]) | |
demo.launch(enable_queue=True) |