Spaces:
Build error
Build error
File size: 5,447 Bytes
79e0b51 203d6b2 79e0b51 203d6b2 79e0b51 173b282 203d6b2 173b282 203d6b2 173b282 758e1e6 203d6b2 62baf56 758e1e6 8028287 173b282 79e0b51 173b282 04c6deb 173b282 3a579df 173b282 04c6deb 7e72612 79e0b51 7e72612 79e0b51 c7d234c 7e72612 79e0b51 c7d234c 79e0b51 758e1e6 fe25003 7e72612 79e0b51 7e72612 79e0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from PIL import Image
import requests
import matplotlib.pyplot as plt
import gradio as gr
from gradio.mix import Parallel
import torch
from transformers import (
ViTConfig,
ViTForImageClassification,
ViTFeatureExtractor,
AutoModelForCausalLM,
LogitsProcessorList,
MinLengthLogitsProcessor,
StoppingCriteriaList,
MaxLengthCriteria,
ImageClassificationPipeline,
PerceiverForImageClassificationConvProcessing,
PerceiverFeatureExtractor,
VisionEncoderDecoderModel,
AutoTokenizer,
)
import json
import os
#get from local file spaces_info.py
from spaces_info import description, examples, initial_prompt_value
#some constants
API_URL = os.getenv("API_URL")
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
##Bloom Inference API
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
#HF_API_TOKEN = os.environ["HF_API_TOKEN"]
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
print(API_URL)
print(HF_API_TOKEN)
def query(payload):
print(payload)
response = requests.request("POST", API_URL, json=payload, headers={"Authorization": f"Bearer {HF_API_TOKEN}"})
print(response)
return json.loads(response.content.decode("utf-8"))
def inference(input_sentence, max_length, sample_or_greedy, seed=42):
if sample_or_greedy == "Sample":
parameters = {
"max_new_tokens": max_length,
"top_p": 0.9,
"do_sample": True,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None,
}
else:
parameters = {
"max_new_tokens": max_length,
"do_sample": False,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None,
}
payload = {"inputs": input_sentence, "parameters": parameters,"options" : {"use_cache": False} }
data = query(payload)
if "error" in data:
return (None, None, f"<span style='color:red'>ERROR: {data['error']} </span>")
generation = data[0]["generated_text"].split(input_sentence, 1)[1]
print(generation)
'''
return (
input_sentence
+ prompt_to_generation
+ generation
+ after_generation,
data[0]["generated_text"],
"",
)
'''
return input_sentence + generation
def self_caption(image):
repo_name = "ydshieh/vit-gpt2-coco-en"
test_image = image
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
tokenizer = AutoTokenizer.from_pretrained(repo_name)
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values
print("Pixel Values")
print(pixel_values)
# autoregressively generate text (using beam search or other decoding strategy)
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
# decode into text
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
print("Predictions")
print(preds)
print("The preds type is : ",type(preds))
pred_keys = ["Prediction"]
pred_value = preds
pred_dictionary = dict(zip(pred_keys, pred_value))
print("Pred dictionary")
print(pred_dictionary)
preds = ' '.join(preds)
#inference(input_sentence, max_length, sample_or_greedy, seed=42)
story = inference(preds, 32, "Sample", 42)
return story
def classify_image(image):
config = ViTConfig(num_hidden_layers=12, hidden_size=768)
model = ViTForImageClassification(config)
#print(config)
feature_extractor = ViTFeatureExtractor()
# or, to load one that corresponds to a checkpoint on the hub:
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
#the following gets called by classify_image()
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
#google/vit-base-patch16-224, deepmind/vision-perceiver-conv
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
results = image_pipe(image)
print("RESULTS")
print(results)
# convert to format Gradio expects
output = {}
for prediction in results:
predicted_label = prediction['label']
score = prediction['score']
output[predicted_label] = score
print("OUTPUT")
print(output)
return output
image = gr.inputs.Image(type="pil")
label = gr.outputs.Label(num_top_classes=5)
#examples = [ ["cats.jpg"], ["batter.jpg"],["drinkers.jpg"] ]
examples = [ ["batter.jpg"] ]
title = "Generate a Story from an Image using BLOOM"
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit', a story is autogenerated as well, story generated using Bigscience/BLOOM"
article = "<p style='text-align: center'></p>"
img_info1 = gr.Interface(
fn=classify_image,
inputs=image,
outputs=label,
)
img_info2 = gr.Interface(
fn=self_caption,
inputs=image,
#outputs=label,
outputs = [
gr.outputs.Textbox(label = 'Story')
],
)
Parallel(img_info1,img_info2, inputs=image, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|