Spaces:
Runtime error
Runtime error
File size: 4,029 Bytes
d66d160 8090b75 4625865 8f420ad ff7eae9 c47a41a 43604c6 41c00ad c47a41a 8090b75 d66d160 c47a41a d66d160 3ce0ef7 d66d160 d7d1270 c47a41a 41c00ad 43604c6 f08c73b 43604c6 f08c73b 41c00ad 0ef83dc 41c00ad c47a41a 41c00ad 98ec703 c47a41a 41c00ad c47a41a d7d1270 c47a41a ab65f9b c47a41a d7d1270 c47a41a 0ef83dc c47a41a ff7eae9 c47a41a ff7eae9 c47a41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
from transformers import ViTConfig, ViTForImageClassification
from transformers import ViTFeatureExtractor
from PIL import Image
import requests
import matplotlib.pyplot as plt
import gradio as gr
from gradio.mix import Parallel
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
from transformers import VisionEncoderDecoderModel
from transformers import AutoTokenizer
import torch
# option 1: load with randomly initialized weights (train from scratch)
config = ViTConfig(num_hidden_layers=12, hidden_size=768)
model = ViTForImageClassification(config)
#print(config)
feature_extractor = ViTFeatureExtractor()
# or, to load one that corresponds to a checkpoint on the hub:
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
#the following gets called by classify_image()
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
'''
# initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"google/vit-base-patch16-224-in21k", "bert-base-uncased"
)
# saving model after fine-tuning
model.save_pretrained("./vit-bert")
# load fine-tuned model
model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
'''
def self_caption(image):
repo_name = "ydshieh/vit-gpt2-coco-en"
#test_image = "cats.jpg"
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
test_image = Image.open(requests.get(url, stream=True).raw)
test_image.save("cats.png")
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
tokenizer = AutoTokenizer.from_pretrained(repo_name)
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values
print("Pixel Values")
print(pixel_values)
# autoregressively generate text (using beam search or other decoding strategy)
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
# decode into text
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
print("Predictions")
print(preds)
return preds
def classify_image(image):
results = image_pipe(image)
print("RESULTS")
print(results)
# convert to format Gradio expects
output = {}
for prediction in results:
predicted_label = prediction['label']
score = prediction['score']
output[predicted_label] = score
print("OUTPUT")
print(output)
return output
image = gr.inputs.Image(type="pil")
image_piped = ""
label = gr.outputs.Label(num_top_classes=5)
examples = [["cats.jpg"], ["dog.jpg"]]
title = "Generate a Story from an Image"
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds." + image_piped
article = "<p style='text-align: center'></p>"
#gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)
img_info1 = gr.Interface(
fn=classify_image,
inputs=image,
outputs=label,
)
img_info2 = gr.Interface(
fn=self_caption,
inputs=image,
outputs=label,
)
gr.Interface([classify_image,self_caption], inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)
Parallel(
img_info1,
img_info2,
inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)
|