Spaces:
Runtime error
Runtime error
from transformers import ViTConfig, ViTForImageClassification | |
from transformers import ViTFeatureExtractor | |
from PIL import Image | |
import requests | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
from gradio.mix import Parallel | |
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor | |
from transformers import VisionEncoderDecoderModel | |
from transformers import AutoTokenizer | |
import torch | |
# option 1: load with randomly initialized weights (train from scratch) | |
config = ViTConfig(num_hidden_layers=12, hidden_size=768) | |
model = ViTForImageClassification(config) | |
#print(config) | |
feature_extractor = ViTFeatureExtractor() | |
# or, to load one that corresponds to a checkpoint on the hub: | |
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") | |
#the following gets called by classify_image() | |
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv") | |
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") | |
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor) | |
''' | |
# initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized | |
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained( | |
"google/vit-base-patch16-224-in21k", "bert-base-uncased" | |
) | |
# saving model after fine-tuning | |
model.save_pretrained("./vit-bert") | |
# load fine-tuned model | |
model = VisionEncoderDecoderModel.from_pretrained("./vit-bert") | |
''' | |
def self_caption(image): | |
repo_name = "ydshieh/vit-gpt2-coco-en" | |
#test_image = "cats.jpg" | |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
test_image = Image.open(requests.get(url, stream=True).raw) | |
test_image.save("cats.png") | |
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name) | |
tokenizer = AutoTokenizer.from_pretrained(repo_name) | |
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name) | |
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values | |
print("Pixel Values") | |
print(pixel_values) | |
# autoregressively generate text (using beam search or other decoding strategy) | |
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True) | |
# decode into text | |
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
print("Predictions") | |
print(preds) | |
return preds | |
def classify_image(image): | |
results = image_pipe(image) | |
print("RESULTS") | |
print(results) | |
# convert to format Gradio expects | |
output = {} | |
for prediction in results: | |
predicted_label = prediction['label'] | |
score = prediction['score'] | |
output[predicted_label] = score | |
print("OUTPUT") | |
print(output) | |
return output | |
image = gr.inputs.Image(type="pil") | |
image_piped = "" | |
label = gr.outputs.Label(num_top_classes=5) | |
examples = [["cats.jpg"], ["dog.jpg"]] | |
title = "Generate a Story from an Image" | |
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds." + image_piped | |
article = "<p style='text-align: center'></p>" | |
#gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True) | |
img_info1 = gr.Interface( | |
fn=classify_image, | |
inputs=image, | |
outputs=label, | |
) | |
img_info2 = gr.Interface( | |
fn=self_caption, | |
inputs=image, | |
outputs=label, | |
) | |
gr.Interface([classify_image,self_caption], inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True) | |
Parallel( | |
img_info1, | |
img_info2, | |
inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True) | |