Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Load pre-trained model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("avisena/bart-base-job-info-summarizer") | |
model = AutoModelForSeq2SeqLM.from_pretrained("avisena/bart-base-job-info-summarizer") | |
# Streamlit app | |
st.title("Text Summarization App") | |
# Text input | |
text_input = st.text_area("Enter the text to summarize:", height=200) | |
# Summarize button | |
if st.button("Summarize"): | |
if text_input: | |
# Tokenize input text | |
inputs = tokenizer.encode(text_input, return_tensors="pt", max_length=1024, truncation='do_not_truncate') | |
# Generate summary | |
summary_ids = model.generate( | |
inputs, | |
max_length=200, # Maximum length of the summary | |
min_length=30, # Minimum length of the summary | |
length_penalty=0.98, # Penalty for longer sequences | |
num_beams=6, # Number of beams for beam search | |
top_p=3.7, | |
early_stopping=True, | |
temperature=1.4, | |
do_sample=True | |
) | |
# Decode summary | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True, max_length=512, truncation='do_not_truncate') | |
# Display the summarized text | |
st.subheader("Summary") | |
st.write(summary) | |
else: | |
st.warning("Please enter some text to summarize.") | |