Spaces:
Runtime error
Runtime error
import pathlib | |
from faster_whisper import WhisperModel | |
import yt_dlp | |
import uuid | |
import os | |
import gradio as gr | |
# List of all supported video sites here https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md | |
def download_convert_video_to_audio( | |
yt_dlp, | |
video_url: str, | |
destination_path: pathlib.Path, | |
) -> None: | |
ydl_opts = { | |
"format": "bestaudio/best", | |
"postprocessors": [ | |
{ # Extract audio using ffmpeg | |
"key": "FFmpegExtractAudio", | |
"preferredcodec": "mp3", | |
} | |
], | |
"outtmpl": f"{destination_path}.%(ext)s", | |
} | |
try: | |
print(f"Downloading video from {video_url}") | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
ydl.download(video_url) | |
print(f"Downloaded video from {video_url} to {destination_path}") | |
except Exception as e: | |
raise (e) | |
def segment_to_dict(segment): | |
segment = segment._asdict() | |
if segment["words"] is not None: | |
segment["words"] = [word._asdict() for word in segment["words"]] | |
return segment | |
def download_video(video_url: str): | |
download_convert_video_to_audio(yt_dlp, video_url, f"/content/{uuid.uuid4().hex}") | |
def transcribe_video(video_url: str, beam_size: int = 5, model_size: str = "tiny", word_timestamps: bool = True): | |
print("loading model") | |
model = WhisperModel(model_size, device="cpu", compute_type="int8") | |
print("getting hex") | |
rand_id = uuid.uuid4().hex | |
print("doing download") | |
download_convert_video_to_audio(yt_dlp, video_url, f"/content/{rand_id}") | |
segments, info = model.transcribe(f"/content/{rand_id}.mp3", beam_size=beam_size, word_timestamps=word_timestamps) | |
segments = [segment_to_dict(segment) for segment in segments] | |
total_duration = round(info.duration, 2) # Same precision as the Whisper timestamps. | |
print(info) | |
os.remove(f"/content/{rand_id}.mp3") | |
print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) | |
print(segments) | |
return segments | |
# print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) | |
# for segment in segments: | |
# print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) | |
demo = gr.Interface(fn=transcribe_video, inputs="text", outputs="text") | |
demo.launch() |