watchtowerss's picture
track-anything --version 1
4d1ebf3
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch
from mmcv.cnn import ConvModule
from mmengine.runner import load_checkpoint
class FlowCompletionLoss(nn.Module):
"""Flow completion loss"""
def __init__(self):
super().__init__()
self.fix_spynet = SPyNet()
for p in self.fix_spynet.parameters():
p.requires_grad = False
self.l1_criterion = nn.L1Loss()
def forward(self, pred_flows, gt_local_frames):
b, l_t, c, h, w = gt_local_frames.size()
with torch.no_grad():
# compute gt forward and backward flows
gt_local_frames = F.interpolate(gt_local_frames.view(-1, c, h, w),
scale_factor=1 / 4,
mode='bilinear',
align_corners=True,
recompute_scale_factor=True)
gt_local_frames = gt_local_frames.view(b, l_t, c, h // 4, w // 4)
gtlf_1 = gt_local_frames[:, :-1, :, :, :].reshape(
-1, c, h // 4, w // 4)
gtlf_2 = gt_local_frames[:, 1:, :, :, :].reshape(
-1, c, h // 4, w // 4)
gt_flows_forward = self.fix_spynet(gtlf_1, gtlf_2)
gt_flows_backward = self.fix_spynet(gtlf_2, gtlf_1)
# calculate loss for flow completion
forward_flow_loss = self.l1_criterion(
pred_flows[0].view(-1, 2, h // 4, w // 4), gt_flows_forward)
backward_flow_loss = self.l1_criterion(
pred_flows[1].view(-1, 2, h // 4, w // 4), gt_flows_backward)
flow_loss = forward_flow_loss + backward_flow_loss
return flow_loss
class SPyNet(nn.Module):
"""SPyNet network structure.
The difference to the SPyNet in [tof.py] is that
1. more SPyNetBasicModule is used in this version, and
2. no batch normalization is used in this version.
Paper:
Optical Flow Estimation using a Spatial Pyramid Network, CVPR, 2017
Args:
pretrained (str): path for pre-trained SPyNet. Default: None.
"""
def __init__(
self,
use_pretrain=True,
pretrained='https://download.openmmlab.com/mmediting/restorers/basicvsr/spynet_20210409-c6c1bd09.pth'
):
super().__init__()
self.basic_module = nn.ModuleList(
[SPyNetBasicModule() for _ in range(6)])
if use_pretrain:
if isinstance(pretrained, str):
print("load pretrained SPyNet...")
load_checkpoint(self, pretrained, strict=True)
elif pretrained is not None:
raise TypeError('[pretrained] should be str or None, '
f'but got {type(pretrained)}.')
self.register_buffer(
'mean',
torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer(
'std',
torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def compute_flow(self, ref, supp):
"""Compute flow from ref to supp.
Note that in this function, the images are already resized to a
multiple of 32.
Args:
ref (Tensor): Reference image with shape of (n, 3, h, w).
supp (Tensor): Supporting image with shape of (n, 3, h, w).
Returns:
Tensor: Estimated optical flow: (n, 2, h, w).
"""
n, _, h, w = ref.size()
# normalize the input images
ref = [(ref - self.mean) / self.std]
supp = [(supp - self.mean) / self.std]
# generate downsampled frames
for level in range(5):
ref.append(
F.avg_pool2d(input=ref[-1],
kernel_size=2,
stride=2,
count_include_pad=False))
supp.append(
F.avg_pool2d(input=supp[-1],
kernel_size=2,
stride=2,
count_include_pad=False))
ref = ref[::-1]
supp = supp[::-1]
# flow computation
flow = ref[0].new_zeros(n, 2, h // 32, w // 32)
for level in range(len(ref)):
if level == 0:
flow_up = flow
else:
flow_up = F.interpolate(input=flow,
scale_factor=2,
mode='bilinear',
align_corners=True) * 2.0
# add the residue to the upsampled flow
flow = flow_up + self.basic_module[level](torch.cat([
ref[level],
flow_warp(supp[level],
flow_up.permute(0, 2, 3, 1).contiguous(),
padding_mode='border'), flow_up
], 1))
return flow
def forward(self, ref, supp):
"""Forward function of SPyNet.
This function computes the optical flow from ref to supp.
Args:
ref (Tensor): Reference image with shape of (n, 3, h, w).
supp (Tensor): Supporting image with shape of (n, 3, h, w).
Returns:
Tensor: Estimated optical flow: (n, 2, h, w).
"""
# upsize to a multiple of 32
h, w = ref.shape[2:4]
w_up = w if (w % 32) == 0 else 32 * (w // 32 + 1)
h_up = h if (h % 32) == 0 else 32 * (h // 32 + 1)
ref = F.interpolate(input=ref,
size=(h_up, w_up),
mode='bilinear',
align_corners=False)
supp = F.interpolate(input=supp,
size=(h_up, w_up),
mode='bilinear',
align_corners=False)
# compute flow, and resize back to the original resolution
flow = F.interpolate(input=self.compute_flow(ref, supp),
size=(h, w),
mode='bilinear',
align_corners=False)
# adjust the flow values
flow[:, 0, :, :] *= float(w) / float(w_up)
flow[:, 1, :, :] *= float(h) / float(h_up)
return flow
class SPyNetBasicModule(nn.Module):
"""Basic Module for SPyNet.
Paper:
Optical Flow Estimation using a Spatial Pyramid Network, CVPR, 2017
"""
def __init__(self):
super().__init__()
self.basic_module = nn.Sequential(
ConvModule(in_channels=8,
out_channels=32,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=32,
out_channels=64,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=64,
out_channels=32,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=32,
out_channels=16,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=dict(type='ReLU')),
ConvModule(in_channels=16,
out_channels=2,
kernel_size=7,
stride=1,
padding=3,
norm_cfg=None,
act_cfg=None))
def forward(self, tensor_input):
"""
Args:
tensor_input (Tensor): Input tensor with shape (b, 8, h, w).
8 channels contain:
[reference image (3), neighbor image (3), initial flow (2)].
Returns:
Tensor: Refined flow with shape (b, 2, h, w)
"""
return self.basic_module(tensor_input)
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
col = col + RY
# YG
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
colorwheel[col:col + YG, 1] = 255
col = col + YG
# GC
colorwheel[col:col + GC, 1] = 255
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
col = col + GC
# CB
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB)
colorwheel[col:col + CB, 2] = 255
col = col + CB
# BM
colorwheel[col:col + BM, 2] = 255
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
col = col + BM
# MR
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR)
colorwheel[col:col + MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1 - f) * col0 + f * col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1 - col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2 - i if convert_to_bgr else i
flow_image[:, :, ch_idx] = np.floor(255 * col)
return flow_image
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:, :, 0]
v = flow_uv[:, :, 1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_uv_to_colors(u, v, convert_to_bgr)
def flow_warp(x,
flow,
interpolation='bilinear',
padding_mode='zeros',
align_corners=True):
"""Warp an image or a feature map with optical flow.
Args:
x (Tensor): Tensor with size (n, c, h, w).
flow (Tensor): Tensor with size (n, h, w, 2). The last dimension is
a two-channel, denoting the width and height relative offsets.
Note that the values are not normalized to [-1, 1].
interpolation (str): Interpolation mode: 'nearest' or 'bilinear'.
Default: 'bilinear'.
padding_mode (str): Padding mode: 'zeros' or 'border' or 'reflection'.
Default: 'zeros'.
align_corners (bool): Whether align corners. Default: True.
Returns:
Tensor: Warped image or feature map.
"""
if x.size()[-2:] != flow.size()[1:3]:
raise ValueError(f'The spatial sizes of input ({x.size()[-2:]}) and '
f'flow ({flow.size()[1:3]}) are not the same.')
_, _, h, w = x.size()
# create mesh grid
grid_y, grid_x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w))
grid = torch.stack((grid_x, grid_y), 2).type_as(x) # (w, h, 2)
grid.requires_grad = False
grid_flow = grid + flow
# scale grid_flow to [-1,1]
grid_flow_x = 2.0 * grid_flow[:, :, :, 0] / max(w - 1, 1) - 1.0
grid_flow_y = 2.0 * grid_flow[:, :, :, 1] / max(h - 1, 1) - 1.0
grid_flow = torch.stack((grid_flow_x, grid_flow_y), dim=3)
output = F.grid_sample(x,
grid_flow,
mode=interpolation,
padding_mode=padding_mode,
align_corners=align_corners)
return output
def initial_mask_flow(mask):
"""
mask 1 indicates valid pixel 0 indicates unknown pixel
"""
B, T, C, H, W = mask.shape
# calculate relative position
grid_y, grid_x = torch.meshgrid(torch.arange(0, H), torch.arange(0, W))
grid_y, grid_x = grid_y.type_as(mask), grid_x.type_as(mask)
abs_relative_pos_y = H - torch.abs(grid_y[None, :, :] - grid_y[:, None, :])
relative_pos_y = H - (grid_y[None, :, :] - grid_y[:, None, :])
abs_relative_pos_x = W - torch.abs(grid_x[:, None, :] - grid_x[:, :, None])
relative_pos_x = W - (grid_x[:, None, :] - grid_x[:, :, None])
# calculate the nearest indices
pos_up = mask.unsqueeze(3).repeat(
1, 1, 1, H, 1, 1).flip(4) * abs_relative_pos_y[None, None, None] * (
relative_pos_y <= H)[None, None, None]
nearest_indice_up = pos_up.max(dim=4)[1]
pos_down = mask.unsqueeze(3).repeat(1, 1, 1, H, 1, 1) * abs_relative_pos_y[
None, None, None] * (relative_pos_y <= H)[None, None, None]
nearest_indice_down = (pos_down).max(dim=4)[1]
pos_left = mask.unsqueeze(4).repeat(
1, 1, 1, 1, W, 1).flip(5) * abs_relative_pos_x[None, None, None] * (
relative_pos_x <= W)[None, None, None]
nearest_indice_left = (pos_left).max(dim=5)[1]
pos_right = mask.unsqueeze(4).repeat(
1, 1, 1, 1, W, 1) * abs_relative_pos_x[None, None, None] * (
relative_pos_x <= W)[None, None, None]
nearest_indice_right = (pos_right).max(dim=5)[1]
# NOTE: IMPORTANT !!! depending on how to use this offset
initial_offset_up = -(nearest_indice_up - grid_y[None, None, None]).flip(3)
initial_offset_down = nearest_indice_down - grid_y[None, None, None]
initial_offset_left = -(nearest_indice_left -
grid_x[None, None, None]).flip(4)
initial_offset_right = nearest_indice_right - grid_x[None, None, None]
# nearest_indice_x = (mask.unsqueeze(1).repeat(1, img_width, 1) * relative_pos_x).max(dim=2)[1]
# initial_offset_x = nearest_indice_x - grid_x
# handle the boundary cases
final_offset_down = (initial_offset_down < 0) * initial_offset_up + (
initial_offset_down > 0) * initial_offset_down
final_offset_up = (initial_offset_up > 0) * initial_offset_down + (
initial_offset_up < 0) * initial_offset_up
final_offset_right = (initial_offset_right < 0) * initial_offset_left + (
initial_offset_right > 0) * initial_offset_right
final_offset_left = (initial_offset_left > 0) * initial_offset_right + (
initial_offset_left < 0) * initial_offset_left
zero_offset = torch.zeros_like(final_offset_down)
# out = torch.cat([final_offset_left, zero_offset, final_offset_right, zero_offset, zero_offset, final_offset_up, zero_offset, final_offset_down], dim=2)
out = torch.cat([
zero_offset, final_offset_left, zero_offset, final_offset_right,
final_offset_up, zero_offset, final_offset_down, zero_offset
],
dim=2)
return out