File size: 6,063 Bytes
4f3f83c
425758f
4f3f83c
 
88575d6
 
 
ec1a913
 
197d161
ec1a913
4f3f83c
425758f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3f83c
0c25646
0f2ccca
0c25646
4442b41
0c25646
 
 
 
 
0f2ccca
0c25646
 
8299dc1
0c25646
 
4442b41
 
 
 
0c25646
 
 
 
 
 
 
8299dc1
0c25646
 
 
 
4f3f83c
 
197d161
 
 
 
4f3f83c
 
 
 
 
0c25646
 
 
 
 
 
 
 
 
 
 
 
4f3f83c
 
fe71706
4f3f83c
 
 
 
b2dca93
4f3f83c
 
 
6769f1b
4f3f83c
 
 
 
 
 
 
 
 
 
 
 
 
 
fe71706
 
 
 
4f3f83c
 
 
 
 
 
 
 
 
199ccd6
 
 
0c25646
4f3f83c
 
aabfdd7
4f3f83c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4442b41
4f3f83c
 
4831744
199ccd6
4f3f83c
 
 
199ccd6
4f3f83c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
#from transformers import WhisperForConditionalGeneration, WhisperProcessor
#from transformers.models.whisper.tokenization_whisper import LANGUAGES
#from transformers.pipelines.audio_utils import ffmpeg_read

model_id = "openai/whisper-large-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"


LANGUANGE_MAP = {
    0: 'Arabic',
    1: 'Basque',
    2: 'Breton',
    3: 'Catalan',
    4: 'Chinese_China',
    5: 'Chinese_Hongkong',
    6: 'Chinese_Taiwan',
    7: 'Chuvash',
    8: 'Czech',
    9: 'Dhivehi',
    10: 'Dutch',
    11: 'English',
    12: 'Esperanto',
    13: 'Estonian',
    14: 'French',
    15: 'Frisian',
    16: 'Georgian',
    17: 'German',
    18: 'Greek',
    19: 'Hakha_Chin',
    20: 'Indonesian',
    21: 'Interlingua',
    22: 'Italian',
    23: 'Japanese',
    24: 'Kabyle',
    25: 'Kinyarwanda',
    26: 'Kyrgyz',
    27: 'Latvian',
    28: 'Maltese',
    29: 'Mongolian',
    30: 'Persian',
    31: 'Polish',
    32: 'Portuguese',
    33: 'Romanian',
    34: 'Romansh_Sursilvan',
    35: 'Russian',
    36: 'Sakha',
    37: 'Slovenian',
    38: 'Spanish',
    39: 'Swedish',
    40: 'Tamil',
    41: 'Tatar',
    42: 'Turkish',
    43: 'Ukranian',
    44: 'Welsh'
 }


import whisper

# define function for transcription
def transcribe(Microphone, File_Upload, URL):
    warn_output = ""
    if (Microphone is not None) and (File_Upload is not None):
        warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
                      "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        file = Microphone

    elif (Microphone is None) and (File_Upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    elif Microphone is not None:
        file = Microphone
        
    else if URL:
        link = YouTube(url)
        source = link.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
    else:
        file = File_Upload
    

    language = None

    options = whisper.DecodingOptions(without_timestamps=True)

    loaded_model = whisper.load_model("base")
    transcript = loaded_model.transcribe(file, language=language)

    return detect_language(transcript["text"])

def detect_language(sentence):
    
    model_ckpt = "barto17/language-detection-fine-tuned-on-xlm-roberta-base"
    model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
    tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
    tokenized_sentence = tokenizer(sentence, return_tensors='pt')
    output = model(**tokenized_sentence)
    predictions = torch.nn.functional.softmax(output.logits, dim=-1)
    probability, pred_idx = torch.max(predictions, dim=-1)
    language = LANGUANGE_MAP[pred_idx.item()]
    return sentence, language, probability.item()


"""
processor = WhisperProcessor.from_pretrained(model_id)
model = WhisperForConditionalGeneration.from_pretrained(model_id)
model.eval()
model.to(device)


bos_token_id = processor.tokenizer.all_special_ids[-106]
decoder_input_ids = torch.tensor([bos_token_id]).to(device)


def process_audio_file(file, sampling_rate):
    with open(file, "rb") as f:
        inputs = f.read()

    audio = ffmpeg_read(inputs, sampling_rate)
    print(audio)
    return audio

def transcribe(Microphone, File_Upload):
    
    warn_output = ""
    if (Microphone is not None) and (File_Upload is not None):
        warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \
                      "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        file = Microphone

    elif (Microphone is None) and (File_Upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    elif Microphone is not None:
        file = Microphone
    else:
        file = File_Upload

    sampling_rate = processor.feature_extractor.sampling_rate


    audio_data = process_audio_file(file, sampling_rate)

    input_features = processor(audio_data, return_tensors="pt").input_features
    
    with torch.no_grad():
        logits = model.forward(input_features.to(device), decoder_input_ids=decoder_input_ids).logits
    
    pred_ids = torch.argmax(logits, dim=-1)
    transcription = processor.decode(pred_ids[0])
    
    language, probability = detect_language(transcription)
    
    return transcription.capitalize(), language, probability
"""

examples=['sample1.mp3', 'sample2.mp3', 'sample3.mp3']
examples = [[f"./{f}"] for f in examples]

outputs=gr.outputs.Label(label="Language detected:")
article = """
Fine-tuned on xlm-roberta-base model.\n
Supported languages:\n 
    'Arabic', 'Basque', 'Breton', 'Catalan', 'Chinese_China', 'Chinese_Hongkong', 'Chinese_Taiwan', 'Chuvash', 'Czech', 
    'Dhivehi', 'Dutch', 'English', 'Esperanto', 'Estonian', 'French', 'Frisian', 'Georgian', 'German', 'Greek', 'Hakha_Chin', 
    'Indonesian', 'Interlingua', 'Italian', 'Japanese', 'Kabyle', 'Kinyarwanda', 'Kyrgyz', 'Latvian', 'Maltese', 
    'Mangolian', 'Persian', 'Polish', 'Portuguese', 'Romanian', 'Romansh_Sursilvan', 'Russian', 'Sakha', 'Slovenian', 
    'Spanish', 'Swedish', 'Tamil', 'Tatar', 'Turkish', 'Ukranian', 'Welsh'
"""

gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type='filepath', optional=True),
        gr.inputs.Audio(source="upload", type='filepath', optional=True),
        gr.Textbox(label="Paste YouTube link here"),
    ],
    
    outputs=[
        gr.outputs.Textbox(label="Transcription"),
        gr.outputs.Textbox(label="Language"),
        gr.Number(label="Probability"),
    ],
    
    verbose=True,
    examples = examples,
    title="Language Identification from Audio",
    description="Detect the Language from Audio.",
    article=article,
    theme="huggingface"
).launch()