Spaces:
Sleeping
Sleeping
File size: 16,633 Bytes
2bb65d7 7e5728d a153c95 acb3f35 a153c95 6bf4834 a153c95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import os
os.system('pip install gradio==3.47.1')
import gradio as gr
import torch
from PIL import ImageDraw
from PIL import Image
import numpy as np
from torchvision.transforms import ToPILImage
import matplotlib.pyplot as plt
import cv2
from regionspot.modeling.regionspot import build_regionspot_model
from regionspot import RegionSpot_Predictor
from regionspot import SamAutomaticMaskGenerator
import ast
fdic = {
# "family": "Impact",
# "style": "italic",
"size": 15,
# "color": "yellow",
# "weight": "bold",
}
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
# Function to show points on an image
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
# Function to show bounding boxes on an image
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - x0, box[3] - y0
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor='none', lw=2))
def auto_show_box(box, label, ax):
x0, y0 = box[0], box[1]
w, h =box[2], box[3]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0,y0,f"{label}", fontdict=fdic)
def show_anns(image, anns, custom_vocabulary):
if anns == False:
plt.imshow(image)
ax = plt.gca()
ax.set_autoscale_on(False)
ax.imshow(image)
pic = plt.gcf()
pic.canvas.draw()
w,h = pic.canvas.get_width_height()
image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
return image
plt.imshow(image)
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
l = custom_vocabulary[int(ann['pred_class'])]
if l != 'background':
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
b = ann['bbox']
auto_show_box(b,l, ax)
ax.imshow(img)
ax.axis('off')
pic = plt.gcf()
pic.canvas.draw()
w,h = pic.canvas.get_width_height()
image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
return image
def process_box(image, input_box, masks, mask_iou_score, class_score, class_index, custom_vocabulary):
# Extract class name and display image with masks and box
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(image)
for idx in range(len(input_box)):
show_mask(masks[idx], ax)
show_box(input_box[idx], ax) # Assuming box_prompt contains all your boxes
# You might want to modify the text display for multiple classes as well
class_name = custom_vocabulary[int(class_index[idx])]
ax.text(input_box[idx][0], input_box[idx][1] - 10, class_name, color='white', fontsize=14, bbox=dict(facecolor='green', edgecolor='green', alpha=0.6))
ax.axis('off')
pic = plt.gcf()
pic.canvas.draw()
w,h = pic.canvas.get_width_height()
image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
return image
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# Description
title = "<center><strong><font size='8'> RegionSpot: Recognize Any Regions </font></strong></center>"
description_e = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
"""
description_p = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
"""
description_b = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
"""
examples = [["examples/dogs.jpg"], ["examples/fruits.jpg"], ["examples/flowers.jpg"],
["examples/000000190756.jpg"], ["examples/image.jpg"], ["examples/000000263860.jpg"],
["examples/000000298738.jpg"], ["examples/000000027620.jpg"], ["examples/000000112634.jpg"],
["examples/000000377814.jpg"], ["examples/000000516143.jpg"]]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def segment_sementic(image, text):
mask_threshold = 0.0
img = image
coor = np.nonzero(img["mask"])
coor[0].sort()
xmin = coor[0][0]
xmax = coor[0][-1]
coor[1].sort()
ymin = coor[1][0]
ymax = coor[1][-1]
input_box = np.array([[ymin, xmin, ymax, xmax]])
image = img["image"]
input_image = np.asarray(image)
ckpt_path = 'regionspot_bl_336.pth'
clip_type = 'CLIP_400M_Large_336'
# clip_input_size = 336
clip_input_size = 224
text = text.split(',')
custom_vocabulary = text
# Build and initialize the model
model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
custom_vocabulary=custom_vocabulary)
# Create predictor and set image
predictor = RegionSpot_Predictor(model.cuda())
predictor.set_image(input_image, clip_input_size=clip_input_size)
masks, mask_iou_score, class_score, class_index = predictor.predict(
point_coords=None,
point_labels=None,
box=input_box,
multimask_output=False,
mask_threshold = mask_threshold,
)
fig = process_box(input_image, input_box,masks, mask_iou_score, class_score, class_index, custom_vocabulary)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
return fig
def text_segment_sementic(image, text, conf_threshold, box_threshold, crop_n_layers, crop_nms_threshold):
mask_threshold = 0.0
image = image
input_image = np.asarray(image)
text = text.split(',')
textP = ['background']
text = textP + text
custom_vocabulary = text
ckpt_path = 'regionspot_bl_336.pth'
clip_type = 'CLIP_400M_Large_336'
clip_input_size = 336
# clip_input_size = 224
model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
custom_vocabulary=custom_vocabulary)
mask_generator = SamAutomaticMaskGenerator(model.cuda(),
# crop_thresh=iou_threshold,
box_thresh=conf_threshold,mask_threshold=mask_threshold,
box_nms_thresh=box_threshold, crop_n_layers=crop_n_layers, crop_nms_thresh= crop_nms_threshold)
masks = mask_generator.generate(input_image)
fig = show_anns(input_image, masks, custom_vocabulary)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
return fig
def point_segment_sementic(image, text, box_threshold, crop_nms_threshold):
global global_points
global global_point_label
global image_temp
mask_threshold = 0.0
input_image = image_temp
output_image = np.asarray(image)
ckpt_path = 'regionspot_bl_336.pth'
clip_type = 'CLIP_400M_Large_336'
clip_input_size = 336
# clip_input_size = 224
text = text.split(',')
textP = ['background']
text = textP + text
custom_vocabulary = text
model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
custom_vocabulary=custom_vocabulary)
mask_generator = SamAutomaticMaskGenerator(model.cuda(),
crop_thresh=0.0,
box_thresh=0.0,
mask_threshold=mask_threshold,
box_nms_thresh=box_threshold, crop_nms_thresh= crop_nms_threshold)
masks = mask_generator.generate_point(input_image,point=np.asarray(global_points), label=np.asarray(global_point_label))
fig = show_anns(output_image, masks, custom_vocabulary)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
return fig
def get_points_with_draw(image, label, evt: gr.SelectData):
global global_points
global global_point_label
global image_temp
if global_point_label == []:
image_temp = np.asarray(image)
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (255, 255, 0) if label == 'Mask' else (255, 0, 255)
global_points.append([x, y])
global_point_label.append(1 if label == 'Mask' else 0)
draw = ImageDraw.Draw(image)
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
return image
cond_img_p = gr.Image(label="Input with points", value="examples/dogs.jpg", type='pil')
cond_img_t = gr.Image(label="Input with text", value="examples/dogs.jpg", type='pil')
cond_img_b = gr.Image(label="Input with box", type="pil",tool='sketch')
# cond_img_b = gr.Image(label="Input with box", type="pil")
img_p = gr.Image(label="Input with points P", type='pil')
segm_img_p = gr.Image(label="Recognize Image with points", interactive=False, type='pil')
segm_img_t = gr.Image(label="Recognize Image with text", interactive=False, type='pil')
segm_img_b = gr.Image(label="Recognize Image with box", interactive=False, type='pil')
global_points = []
global_point_label = []
image_temp = np.array([])
with gr.Blocks(css=css, title='Region Spot') as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Points mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
add_or_remove = gr.Radio(["Mask", "Background"], value="Mask", label="Point_label (foreground/background)")
text_box_p = gr.Textbox(label="vocabulary", value="dog,cat")
with gr.Column():
segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
clear_btn_p = gr.Button("Clear", variant='secondary')
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[cond_img_t],
examples_per_page=18)
with gr.Column():
with gr.Accordion("Advanced options", open=True):
box_threshold_p = gr.Slider(0.0, 0.9, 0.7, step=0.05, label='box threshold', info='box nms threshold')
crop_threshold_p = gr.Slider(0.0, 0.9, 0.7, step=0.05, label='crop threshold', info='crop nms threshold')
# Description
gr.Markdown(description_p)
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
segment_btn_p.click(point_segment_sementic,
inputs=[
cond_img_p,
text_box_p,
box_threshold_p,
crop_threshold_p,
],
outputs=[segm_img_p])
with gr.Tab("Text mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_t.render()
with gr.Column(scale=1):
segm_img_t.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
text_box_t = gr.Textbox(label="text prompt", value="dog,cat")
with gr.Column():
segment_btn_t = gr.Button("Segment with text", variant='primary')
clear_btn_t = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[cond_img_t],
examples_per_page=18)
with gr.Column():
with gr.Accordion("Advanced options", open=True):
conf_threshold_t = gr.Slider(0.0, 0.9, 0.8, step=0.05, label='clip threshold', info='object confidence threshold of clip')
box_threshold_t = gr.Slider(0.0, 0.9, 0.5, step=0.05, label='box threshold', info='box nms threshold')
crop_n_layers_t = gr.Slider(0, 3, 0, step=1, label='crop_n_layers', info='crop_n_layers of auto generator')
crop_threshold_t = gr.Slider(0.0, 0.9, 0.5, step=0.05, label='crop threshold', info='crop nms threshold')
# Description
gr.Markdown(description_e)
segment_btn_t.click(text_segment_sementic,
inputs=[
cond_img_t,
text_box_t,
conf_threshold_t,
box_threshold_t,
crop_n_layers_t,
crop_threshold_t
],
outputs=[segm_img_t])
with gr.Tab("Box mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_b.render()
with gr.Column(scale=1):
segm_img_b.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
text_box_b = gr.Textbox(label="vocabulary", value="dog,cat")
with gr.Column():
segment_btn_b = gr.Button("Segment with box", variant='primary')
clear_btn_b = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[cond_img_t],
examples_per_page=18)
with gr.Column():
# Description
gr.Markdown(description_b)
segment_btn_b.click(segment_sementic,
inputs=[
cond_img_b,
text_box_b,
],
outputs=[segm_img_b])
def clear():
return None, None, None
def clear_text():
return None, None, None
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, text_box_p])
clear_btn_t.click(clear_text, outputs=[cond_img_t, segm_img_t, text_box_t])
clear_btn_b.click(clear_text, outputs=[cond_img_b, segm_img_b, text_box_b])
demo.queue()
demo.launch() |