File size: 10,133 Bytes
a153c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from typing import Any, Dict, List, Tuple
from .segment_anything.utils.transforms import ResizeLongestSide
from .segment_anything.build_sam import sam_model_registry
from .decoder import build_decoder
from . import constants
from einops import rearrange

from .segment_anything.modeling.prompt_engineering import prompt_engineering, get_prompt_templates
from .clip import load as load_clip
import clip


class RegionSpot(nn.Module):
    TEXT_FEATS_MAP = {
        'coco': 'text_feats_coco',
        'objects365': 'text_feats_objects365',
        'v3det': 'text_feats_v3det',
        'lvis': 'text_feats_lvis',
        'openimages': 'text_feats_openimages'
    }

    def __init__(self, sam_checkpoint='./sam_checkpoints/sam_vit_b_01ec64.pth',
                 clip_type='CLIP_400M_Large', is_training=True, custom_vocabulary=None, image_size=224):
        super().__init__()

        self.sam = sam_model_registry['vit_b'](checkpoint=sam_checkpoint)
        self._freeze_module(self.sam)

        self.clip_model, self.text_dim, self.clip_dim = self._load_clip_model(clip_type, image_size)
        self.clip_model.eval()
        self._freeze_module(self.clip_model)
        self.logit_scale = self.clip_model.logit_scale.exp()

        self.to_clip = nn.Linear(256, self.clip_dim)
        self.ln_clip = nn.LayerNorm(self.clip_dim, elementwise_affine=False)
        self.projector = nn.Linear(self.clip_dim, self.text_dim)
        self.decoder = build_decoder(d_model=self.clip_dim)

        # Dynamically set attributes based on the datasets in the map
        if is_training:
            datasets_to_load = ['objects365', 'v3det', 'openimages']
            for dataset in datasets_to_load:
                setattr(self, self.TEXT_FEATS_MAP[dataset], self.get_text_feat(dataset))
        else:
            dataset_name = 'custom' if custom_vocabulary else 'lvis'
#             custom_vocabulary += ["background"]
            self.text_feats = self.get_text_feat(dataset_name, custom_class=custom_vocabulary)
    
    def _add_text_vocab(custom_vocabulary):
        dataset_name = 'custom' 
        setattr(self, self.TEXT_FEATS_MAP['openimages'],custom_class = custom_vocabulary)
    
    @staticmethod
    def _freeze_module(module):
        for param in module.parameters():
            param.requires_grad = False

    def _load_clip_model(self, clip_type, image_size):
        clip_model_map = {
            'CLIP_400M': ("ViT-B/16", 512, 768),
            'CLIP_400M_Large': ("ViT-L/14", 768, 1024),
            'CLIP_400M_Large_336': ("ViT-L/14@336px", 768, 1024)
        }
        model_type, text_dim, clip_dim = clip_model_map[clip_type]
        clip_model, _ = load_clip(model_type, image_size=image_size)
        return clip_model, text_dim, clip_dim

    @torch.no_grad()
    def get_text_feat(self, dataset_name: str, custom_class=None) -> torch.Tensor:
        dataset_map = {
            'coco': constants.COCO_INSTANCE_CLASSES,
            'objects365': constants.OBJECTS365V1,
            'v3det': constants.V3DET,
            'lvis': constants.LVIS_CATEGORIES,
            'openimages': constants.OPENIMAGE,
            'custom': custom_class
        }

        # Error handling for custom dataset without custom classes provided
        if dataset_name == 'custom' and custom_class is None:
            raise ValueError("For custom datasets, you must provide the 'custom_class' parameter.")
        
        class_names = dataset_map.get(dataset_name, [])

        def clean_class_name(clss: str) -> str:
            """Clean class names for prompt templates."""
            return clss.replace('-other', '').replace('-merged', '').replace('-stuff', '')

        def extract_mean_emb(text: str) -> torch.Tensor:
            """Extract mean embeddings from text using the clip model."""
            tokens = clip.tokenize(text).cuda()
            
            if len(tokens) > 10000:
                split_idx = len(tokens) // 2
                text_features = torch.cat([
                    self.clip_model.encode_text(tokens[:split_idx]),
                    self.clip_model.encode_text(tokens[split_idx:])],
                    dim=0)
            else:
                text_features = self.clip_model.encode_text(tokens)

            return torch.mean(text_features, 0, keepdims=True)[0]

        templates = get_prompt_templates()
        clss_embeddings = []
        for clss in class_names:
            txts = [template.format(clss.replace('-other','').replace('-merged','').replace('-stuff','')) for template in templates]
#             txts = [clss]
            clss_embeddings.append(extract_mean_emb(txts))

        text_emb = torch.stack(clss_embeddings, dim=0)
        text_emb /= text_emb.norm(dim=-1, keepdim=True) 
        
        return text_emb

    def sigmoid_focal_loss(self, inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, reduction=True):
        """Compute the sigmoid focal loss."""
        prob = inputs.sigmoid()
        ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
        p_t = prob * targets + (1 - prob) * (1 - targets)
        loss = ce_loss * ((1 - p_t) ** gamma)

        if alpha >= 0:
            loss = (alpha * targets + (1 - alpha) * (1 - targets)) * loss

        return loss.mean(1).sum() / num_boxes

    def get_logits(self, region_features, text_features, logit_scale):
        """Compute logits for region and text features."""
        region_features = region_features / (region_features.norm(dim=-1, keepdim=True) + 1e-7)
        logits_per_image = logit_scale * region_features @ text_features.unsqueeze(0).transpose(1, 2)
        logits_per_text = logit_scale * text_features.unsqueeze(0) @ region_features.transpose(1, 2)
        return logits_per_image, logits_per_text

    def ce_loss(self, region_features, label, logit_scale, dataset_name, focal_alpha=0.25):
        """Compute the cross-entropy loss."""
        b, n_box, d = region_features.shape
        text_feats = getattr(self, self.TEXT_FEATS_MAP[dataset_name])

        logits_per_image, _ = self.get_logits(region_features, text_feats, logit_scale)

        target_classes_onehot = torch.zeros(logits_per_image.shape, dtype=logits_per_image.dtype, device=logits_per_image.device)
        label = label.long()
        target_classes_onehot.scatter_(2, label.unsqueeze(-1), 1)

        loss_ce = self.sigmoid_focal_loss(logits_per_image, target_classes_onehot, n_box, alpha=focal_alpha, gamma=2) * logits_per_image.shape[1]

        return loss_ce

    def forward_train(self, batched_input: List[Dict[str, Any]]) -> List[Dict[str, torch.Tensor]]:
        """Training forward pass."""
        resized_image = torch.stack([x["resized_image"] for x in batched_input], dim=0)

        with torch.no_grad():
            clip_feat = self.clip_model.encode_image_featuremap(resized_image).detach()
           

        masks_token = torch.stack([x["mask_tokens"] for x in batched_input], dim=0).squeeze(2)
        dataset_name = batched_input[0]["dataset_name"]
        masks_token = self.to_clip(masks_token)

        semantic_token = self.projector(self.decoder(masks_token, clip_feat))
        label = torch.stack([x["label"] for x in batched_input], dim=0)

        return self.ce_loss(semantic_token, label, self.logit_scale, dataset_name)

    def forward_eval(self, batched_input: List[Dict[str, Any]], multimask_output=False) -> List[Dict[str, torch.Tensor]]:
        """Inference forward pass."""
        sam_output = self.sam(batched_input, multimask_output=multimask_output)
        masks_token = torch.stack([x["masks_token"] for x in sam_output], dim=0).squeeze(2)
        pred_mask = torch.stack([x["masks"] for x in sam_output], dim=0)
        resized_image = torch.stack([x["resized_image"] for x in batched_input], dim=0)

        with torch.no_grad():
            self.decoder.eval()
            clip_feat = self.clip_model.encode_image_featuremap(resized_image).detach()
        
            masks_token = self.to_clip(masks_token)

            semantic_token = self.projector(self.decoder(masks_token, clip_feat))

        logits_per_image, _ = self.get_logits(semantic_token, self.text_feats, self.logit_scale)

        return logits_per_image, pred_mask

    def forward_inference(self, clip_feat, masks_token, resized_image,) -> List[Dict[str, torch.Tensor]]:
        """Inference forward pass."""
    #    if masks_token.shape
        masks_token = masks_token[None,:]
        if masks_token.shape[2] == 1:
            masks_token = masks_token.squeeze(2)
        else:
            masks_token = masks_token.permute(2, 1, 0, 3).squeeze(2)
            clip_feat = clip_feat.repeat(3, 1, 1)
        with torch.no_grad():
            self.decoder.eval()
            masks_token = self.to_clip(masks_token)
            semantic_token = self.projector(self.decoder(masks_token, clip_feat))
            
            logits_per_image, _ = self.get_logits(semantic_token, self.text_feats, self.logit_scale)
            if logits_per_image.shape[0] == 3:
                logits_per_image = logits_per_image.permute(1, 0, 2)
        return logits_per_image
        
      
        
def build_regionspot_model(clip_type='CLIP_400M_Large', is_training=True, pretrain_ckpt=None, image_size=224, custom_vocabulary=None):
    model = RegionSpot(clip_type=clip_type, is_training=is_training, image_size=image_size, custom_vocabulary=custom_vocabulary)
    if pretrain_ckpt:
        checkpoint = torch.load(pretrain_ckpt, map_location='cpu')['model']
        
        # Remove the 'model.' prefix
        new_checkpoint = {}
        for key in checkpoint.keys():
            if key.startswith('model.'):
                new_key = key[len('model.'):]
                new_checkpoint[new_key] = checkpoint[key]
            else:
                new_checkpoint[key] = checkpoint[key]
        
        # Load the modified state dict
        msg = model.load_state_dict(new_checkpoint, strict=False)
    else:
        msg= 'training stage'
    return model, msg