Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Misc functions, including distributed helpers. | |
Mostly copy-paste from torchvision references. | |
""" | |
import os | |
import subprocess | |
import time | |
from collections import defaultdict, deque | |
import datetime | |
import pickle | |
from typing import Optional, List | |
import torch | |
import torch.distributed as dist | |
from torch import Tensor | |
# needed due to empty tensor bug in pytorch and torchvision 0.5 | |
import torchvision | |
TORCH_MAJOR = int(torchvision.__version__.split('.')[0]) | |
TORCH_MINOR = int(torchvision.__version__.split('.')[1]) | |
if TORCH_MAJOR == 0 and TORCH_MINOR < 7: | |
from torchvision.ops import _new_empty_tensor | |
from torchvision.ops.misc import _output_size | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value) | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to("cuda") | |
# obtain Tensor size of each rank | |
local_size = torch.tensor([tensor.numel()], device="cuda") | |
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) | |
if local_size != max_size: | |
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_dict(input_dict, average=True): | |
""" | |
Args: | |
input_dict (dict): all the values will be reduced | |
average (bool): whether to do average or sum | |
Reduce the values in the dictionary from all processes so that all processes | |
have the averaged results. Returns a dict with the same fields as | |
input_dict, after reduction. | |
""" | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
names = [] | |
values = [] | |
# sort the keys so that they are consistent across processes | |
for k in sorted(input_dict.keys()): | |
names.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, dim=0) | |
dist.all_reduce(values) | |
if average: | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(names, values)} | |
return reduced_dict | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format( | |
type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append( | |
"{}: {}".format(name, str(meter)) | |
) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None): | |
i = 0 | |
if not header: | |
header = '' | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt='{avg:.4f}') | |
data_time = SmoothedValue(fmt='{avg:.4f}') | |
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
if torch.cuda.is_available(): | |
log_msg = self.delimiter.join([ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}', | |
'max mem: {memory:.0f}' | |
]) | |
else: | |
log_msg = self.delimiter.join([ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}' | |
]) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == len(iterable) - 1: | |
eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
print(log_msg.format( | |
i, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB)) | |
else: | |
print(log_msg.format( | |
i, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time))) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('{} Total time: {} ({:.4f} s / it)'.format( | |
header, total_time_str, total_time / len(iterable))) | |
def get_sha(): | |
cwd = os.path.dirname(os.path.abspath(__file__)) | |
def _run(command): | |
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() | |
sha = 'N/A' | |
diff = "clean" | |
branch = 'N/A' | |
try: | |
sha = _run(['git', 'rev-parse', 'HEAD']) | |
subprocess.check_output(['git', 'diff'], cwd=cwd) | |
diff = _run(['git', 'diff-index', 'HEAD']) | |
diff = "has uncommited changes" if diff else "clean" | |
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) | |
except Exception: | |
pass | |
message = f"sha: {sha}, status: {diff}, branch: {branch}" | |
return message | |
def collate_fn(batch): | |
batch = list(zip(*batch)) | |
batch[0] = nested_tensor_from_tensor_list(batch[0]) | |
return tuple(batch) | |
def _max_by_axis(the_list): | |
# type: (List[List[int]]) -> List[int] | |
maxes = the_list[0] | |
for sublist in the_list[1:]: | |
for index, item in enumerate(sublist): | |
maxes[index] = max(maxes[index], item) | |
return maxes | |
class NestedTensor(object): | |
def __init__(self, tensors, mask: Optional[Tensor]): | |
self.tensors = tensors | |
self.mask = mask | |
def to(self, device): | |
# type: (Device) -> NestedTensor # noqa | |
cast_tensor = self.tensors.to(device) | |
mask = self.mask | |
if mask is not None: | |
assert mask is not None | |
cast_mask = mask.to(device) | |
else: | |
cast_mask = None | |
return NestedTensor(cast_tensor, cast_mask) | |
def decompose(self): | |
return self.tensors, self.mask | |
def __repr__(self): | |
return str(self.tensors) | |
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): | |
# TODO make this more general | |
if tensor_list[0].ndim == 3: | |
if torchvision._is_tracing(): | |
# nested_tensor_from_tensor_list() does not export well to ONNX | |
# call _onnx_nested_tensor_from_tensor_list() instead | |
return _onnx_nested_tensor_from_tensor_list(tensor_list) | |
# TODO make it support different-sized images | |
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) | |
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) | |
batch_shape = [len(tensor_list)] + max_size | |
b, c, h, w = batch_shape | |
dtype = tensor_list[0].dtype | |
device = tensor_list[0].device | |
tensor = torch.zeros(batch_shape, dtype=dtype, device=device) | |
mask = torch.ones((b, h, w), dtype=torch.bool, device=device) | |
for img, pad_img, m in zip(tensor_list, tensor, mask): | |
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
m[: img.shape[1], :img.shape[2]] = False | |
else: | |
raise ValueError('not supported') | |
return NestedTensor(tensor, mask) | |
# _onnx_nested_tensor_from_tensor_list() is an implementation of | |
# nested_tensor_from_tensor_list() that is supported by ONNX tracing. | |
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: | |
max_size = [] | |
for i in range(tensor_list[0].dim()): | |
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64) | |
max_size.append(max_size_i) | |
max_size = tuple(max_size) | |
# work around for | |
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
# m[: img.shape[1], :img.shape[2]] = False | |
# which is not yet supported in onnx | |
padded_imgs = [] | |
padded_masks = [] | |
for img in tensor_list: | |
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] | |
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) | |
padded_imgs.append(padded_img) | |
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) | |
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) | |
padded_masks.append(padded_mask.to(torch.bool)) | |
tensor = torch.stack(padded_imgs) | |
mask = torch.stack(padded_masks) | |
return NestedTensor(tensor, mask=mask) | |
def setup_for_distributed(is_master): | |
""" | |
This function disables printing when not in master process | |
""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop('force', False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def save_on_master(*args, **kwargs): | |
if is_main_process(): | |
torch.save(*args, **kwargs) | |
def init_distributed_mode(args): | |
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ['WORLD_SIZE']) | |
args.gpu = int(os.environ['LOCAL_RANK']) | |
elif 'SLURM_PROCID' in os.environ: | |
args.rank = int(os.environ['SLURM_PROCID']) | |
args.gpu = args.rank % torch.cuda.device_count() | |
else: | |
print('Not using distributed mode') | |
args.distributed = False | |
return | |
args.distributed = True | |
torch.cuda.set_device(args.gpu) | |
args.dist_backend = 'nccl' | |
print('| distributed init (rank {}): {}'.format( | |
args.rank, args.dist_url), flush=True) | |
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
world_size=args.world_size, rank=args.rank) | |
torch.distributed.barrier() | |
setup_for_distributed(args.rank == 0) | |
def accuracy(output, target, topk=(1,)): | |
"""Computes the precision@k for the specified values of k""" | |
if target.numel() == 0: | |
return [torch.zeros([], device=output.device)] | |
maxk = max(topk) | |
batch_size = target.size(0) | |
_, pred = output.topk(maxk, 1, True, True) | |
pred = pred.t() | |
correct = pred.eq(target.view(1, -1).expand_as(pred)) | |
res = [] | |
for k in topk: | |
correct_k = correct[:k].view(-1).float().sum(0) | |
res.append(correct_k.mul_(100.0 / batch_size)) | |
return res | |
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor | |
""" | |
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. | |
This will eventually be supported natively by PyTorch, and this | |
class can go away. | |
""" | |
if float(torchvision.__version__[:3]) < 0.7: | |
if input.numel() > 0: | |
return torch.nn.functional.interpolate( | |
input, size, scale_factor, mode, align_corners | |
) | |
output_shape = _output_size(2, input, size, scale_factor) | |
output_shape = list(input.shape[:-2]) + list(output_shape) | |
return _new_empty_tensor(input, output_shape) | |
else: | |
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) | |