bklg's picture
Upload 114 files
a153c95
raw
history blame
11.7 kB
import itertools
import logging
import torch.utils.data
from detectron2.config import CfgNode, configurable
from detectron2.data.build import (
build_batch_data_loader,
load_proposals_into_dataset,
trivial_batch_collator,
)
from detectron2.data.catalog import DatasetCatalog
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.samplers import InferenceSampler, TrainingSampler
from detectron2.utils.comm import get_world_size
from torch.utils.data.sampler import Sampler
from collections import defaultdict
from typing import Optional
from detectron2.utils import comm
def _compute_num_images_per_worker(cfg: CfgNode):
num_workers = get_world_size()
images_per_batch = cfg.SOLVER.IMS_PER_BATCH
assert (
images_per_batch % num_workers == 0
), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
images_per_batch, num_workers
)
assert (
images_per_batch >= num_workers
), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
images_per_batch, num_workers
)
images_per_worker = images_per_batch // num_workers
return images_per_worker
def filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names):
"""
Filter out images with none annotations or only crowd annotations
(i.e., images without non-crowd annotations).
A common training-time preprocessing on COCO dataset.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
Returns:
list[dict]: the same format, but filtered.
"""
num_before = len(dataset_dicts)
def valid(anns):
for ann in anns:
if isinstance(ann, list):
for instance in ann:
if instance.get("iscrowd", 0) == 0:
return True
else:
if ann.get("iscrowd", 0) == 0:
return True
return False
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images with no usable annotations. {} images left.".format(
num_before - num_after, num_after
)
)
return dataset_dicts
def get_detection_dataset_dicts(
dataset_names, filter_empty=True, proposal_files=None
):
"""
Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation.
Args:
dataset_names (str or list[str]): a dataset name or a list of dataset names
filter_empty (bool): whether to filter out images without instance annotations
proposal_files (list[str]): if given, a list of object proposal files
that match each dataset in `dataset_names`.
Returns:
list[dict]: a list of dicts following the standard dataset dict format.
"""
if isinstance(dataset_names, str):
dataset_names = [dataset_names]
assert len(dataset_names)
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
if proposal_files is not None:
assert len(dataset_names) == len(proposal_files)
# load precomputed proposals from proposal files
dataset_dicts = [
load_proposals_into_dataset(dataset_i_dicts, proposal_file)
for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files)
]
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names)
assert len(dataset_dicts), "No valid data found in {}.".format(",".join(dataset_names))
return dataset_dicts
def _train_loader_from_config(cfg, mapper, *, dataset=None, sampler=None):
if dataset is None:
dataset = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, True)
if sampler is None:
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
logger = logging.getLogger(__name__)
logger.info("Using training sampler {}".format(sampler_name))
if sampler_name == "TrainingSampler":
sampler = TrainingSampler(len(dataset))
elif sampler_name == "ClassAwareSampler":
sampler = ClassAwareSampler(dataset)
return {
"dataset": dataset,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
"num_workers": cfg.DATALOADER.NUM_WORKERS,
"use_mixup": True
}
# TODO can allow dataset as an iterable or IterableDataset to make this function more general
@configurable(from_config=_train_loader_from_config)
def build_detection_train_loader(
dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0,
use_mixup=False
):
"""
Build a dataloader for object detection with some default features.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset and
returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``.
sampler (torch.utils.data.sampler.Sampler or None): a sampler that
produces indices to be applied on ``dataset``.
Default to :class:`TrainingSampler`, which coordinates a random shuffle
sequence across all workers.
total_batch_size (int): total batch size across all workers. Batching
simply puts data into a list.
aspect_ratio_grouping (bool): whether to group images with similar
aspect ratio for efficiency. When enabled, it requires each
element in dataset be a dict with keys "width" and "height".
num_workers (int): number of parallel data loading workers
Returns:
torch.utils.data.DataLoader: a dataloader. Each output from it is a
``list[mapped_element]`` of length ``total_batch_size / num_workers``,
where ``mapped_element`` is produced by the ``mapper``.
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
if use_mixup:
dataset = MapDatasetMixup(dataset, mapper)
else:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
return build_batch_data_loader(
dataset,
sampler,
total_batch_size,
aspect_ratio_grouping=aspect_ratio_grouping,
num_workers=num_workers,
)
def _test_loader_from_config(cfg, dataset_name, mapper=None):
"""
Uses the given `dataset_name` argument (instead of the names in cfg), because the
standard practice is to evaluate each test set individually (not combining them).
"""
dataset = get_detection_dataset_dicts(
[dataset_name],
filter_empty=False,
proposal_files=[
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]
]
if cfg.MODEL.LOAD_PROPOSALS
else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, False)
return {"dataset": dataset, "mapper": mapper, "num_workers": cfg.DATALOADER.NUM_WORKERS}
@configurable(from_config=_test_loader_from_config)
def build_detection_test_loader(dataset, *, mapper, num_workers=0):
"""
Similar to `build_detection_train_loader`, but uses a batch size of 1.
This interface is experimental.
Args:
dataset (list or torch.utils.data.Dataset): a list of dataset dicts,
or a map-style pytorch dataset. They can be obtained by using
:func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`.
mapper (callable): a callable which takes a sample (dict) from dataset
and returns the format to be consumed by the model.
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``.
num_workers (int): number of parallel data loading workers
Returns:
DataLoader: a torch DataLoader, that loads the given detection
dataset, with test-time transformation and batching.
Examples:
::
data_loader = build_detection_test_loader(
DatasetRegistry.get("my_test"),
mapper=DatasetMapper(...))
# or, instantiate with a CfgNode:
data_loader = build_detection_test_loader(cfg, "my_test")
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
sampler = InferenceSampler(len(dataset))
# Always use 1 image per worker during inference since this is the
# standard when reporting inference time in papers.
# batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=1,
sampler=sampler,
drop_last=False,
num_workers=num_workers,
collate_fn=trivial_batch_collator,
)
return data_loader
class ClassAwareSampler(Sampler):
def __init__(self, dataset_dicts, seed: Optional[int] = None):
"""
"""
self._size = len(dataset_dicts)
assert self._size > 0
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.weights = self._get_class_balance_factor(dataset_dicts)
def __iter__(self):
start = self._rank
yield from itertools.islice(
self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
g = torch.Generator()
g.manual_seed(self._seed)
while True:
ids = torch.multinomial(
self.weights, self._size, generator=g,
replacement=True)
yield from ids
def _get_class_balance_factor(self, dataset_dicts, l=1.):
ret = []
category_freq = defaultdict(int)
for dataset_dict in dataset_dicts: # For each image (without repeats)
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
for cat_id in cat_ids:
category_freq[cat_id] += 1
for i, dataset_dict in enumerate(dataset_dicts):
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
ret.append(sum(
[1. / (category_freq[cat_id] ** l) for cat_id in cat_ids]))
return torch.tensor(ret).float()