bklg commited on
Commit
dccc960
·
1 Parent(s): a153c95

Upload 37 files

Browse files
.gitattributes CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  regionspot/data/__pycache__/v3det_categories.cpython-38.pyc filter=lfs diff=lfs merge=lfs -text
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  regionspot/data/__pycache__/v3det_categories.cpython-38.pyc filter=lfs diff=lfs merge=lfs -text
37
+ images/pic2.png filter=lfs diff=lfs merge=lfs -text
38
+ images/pic3.png filter=lfs diff=lfs merge=lfs -text
assets/framework.jpg ADDED
assets/image.jpg ADDED
assets/results.jpg ADDED
configs/Base-RegionSpot.yaml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL:
2
+ META_ARCHITECTURE: "RegionSpot"
3
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
4
+ PIXEL_STD: [58.395, 57.120, 57.375]
5
+
6
+ SOLVER:
7
+ IMS_PER_BATCH: 16
8
+ BASE_LR: 0.000025
9
+ CHECKPOINT_PERIOD: 50000
10
+ STEPS: (210000, 250000)
11
+ MAX_ITER: 270000
12
+ WARMUP_FACTOR: 0.01
13
+ WARMUP_ITERS: 1000
14
+ WEIGHT_DECAY: 0.0001
15
+ OPTIMIZER: "ADAMW"
16
+ BACKBONE_MULTIPLIER: 1.0 # keep same with BASE_LR.
17
+ CLIP_GRADIENTS:
18
+ ENABLED: True
19
+ CLIP_TYPE: "full_model"
20
+ CLIP_VALUE: 1.0
21
+ NORM_TYPE: 2.0
22
+ SEED: 40244023
23
+ INPUT:
24
+ MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
25
+ CROP:
26
+ ENABLED: False
27
+ TYPE: "absolute_range"
28
+ SIZE: (384, 600)
29
+ FORMAT: "RGB"
30
+ TEST:
31
+ EVAL_PERIOD: 733000000
32
+ DATALOADER:
33
+ FILTER_EMPTY_ANNOTATIONS: False
34
+ NUM_WORKERS: 4
35
+ VERSION: 2
36
+
configs/eval.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RegionSpot.yaml"
2
+ MODEL:
3
+ CLIP_TYPE: CLIP_400M_Large
4
+ TRAINING: False
5
+ BOX_TYPE: 'PRED_BOX'
6
+ MASK_ON: True
7
+ DATASETS: # LVIS
8
+ TRAIN: ("lvis_v1_train",)
9
+ TEST: ("lvis_v1_val",)
10
+ DATALOADER:
11
+ SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
12
+ REPEAT_THRESHOLD: 0.001
13
+ INPUT:
14
+ CROP:
15
+ ENABLED: True
16
+ FORMAT: "RGB"
17
+ TEST: # LVIS
18
+ EVAL_PERIOD: 0 # disable eval during train since long time
19
+
20
+ OUTPUT_DIR: './output/eval'
21
+
configs/objects365_bb.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RegionSpot.yaml"
2
+ MODEL:
3
+ CLIP_TYPE: CLIP_400M
4
+ DATALOADER:
5
+ SAMPLER_TRAIN: "MultiDatasetSampler"
6
+ DATASETS:
7
+ TRAIN: ("objects365_train",)
8
+ TEST: ()
9
+ TEST:
10
+ EVAL_PERIOD: 0
11
+ SOLVER:
12
+ STEPS: (350000, 420000)
13
+ MAX_ITER: 450000
14
+ INPUT:
15
+ CROP:
16
+ ENABLED: True
17
+ FORMAT: "RGB"
18
+ OUTPUT_DIR: './output/regionspot_obj365_bb'
configs/objects365_bl.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RegionSpot.yaml"
2
+ MODEL:
3
+ CLIP_TYPE: CLIP_400M_Large
4
+ DATALOADER:
5
+ SAMPLER_TRAIN: "MultiDatasetSampler"
6
+ DATASETS:
7
+ TRAIN: ("objects365_train",)
8
+ TEST: ()
9
+ TEST:
10
+ EVAL_PERIOD: 0
11
+ SOLVER:
12
+ STEPS: (350000, 420000)
13
+ MAX_ITER: 450000
14
+ INPUT:
15
+ CROP:
16
+ ENABLED: True
17
+ FORMAT: "RGB"
18
+ OUTPUT_DIR: './output/regionspot_obj365_bl'
configs/objects365_bl_336.yaml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RegionSpot.yaml"
2
+ MODEL:
3
+ CLIP_TYPE: CLIP_400M_Large_336
4
+ CLIP_INPUT_SIZE: 336
5
+ DATALOADER:
6
+ SAMPLER_TRAIN: "MultiDatasetSampler"
7
+ DATASETS:
8
+ TRAIN: ("objects365_train",)
9
+ TEST: ()
10
+ TEST:
11
+ EVAL_PERIOD: 0
12
+ SOLVER:
13
+ STEPS: (350000, 420000)
14
+ MAX_ITER: 450000
15
+ INPUT:
16
+ CROP:
17
+ ENABLED: True
18
+ FORMAT: "RGB"
19
+ OUTPUT_DIR: './output/regionspot_obj365_bl_336'
configs/objects365_v3det_openimages_bb.yaml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RegionSpot.yaml"
2
+ MODEL:
3
+ WEIGHTS: "./output/regionspot_obj365_bb/model_final.pth"
4
+ CLIP_TYPE: CLIP_400M
5
+ DATALOADER:
6
+ SAMPLER_TRAIN: "MultiDatasetSampler"
7
+ DATASETS:
8
+ TRAIN: ("objects365_train", "v3det_train","openimages_train",)
9
+ TEST: ()
10
+ TEST:
11
+ EVAL_PERIOD: 0
12
+ SOLVER:
13
+ STEPS: (350000, 420000)
14
+ MAX_ITER: 450000
15
+ INPUT:
16
+ CROP:
17
+ ENABLED: True
18
+ FORMAT: "RGB"
19
+ OUTPUT_DIR: './output/regionspot_alldata_bb'
configs/objects365_v3det_openimages_bl.yaml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RegionSpot.yaml"
2
+ MODEL:
3
+ WEIGHTS: "./output/regionspot_obj365_bl/model_final.pth"
4
+ CLIP_TYPE: CLIP_400M_Large
5
+ DATALOADER:
6
+ SAMPLER_TRAIN: "MultiDatasetSampler"
7
+ DATASETS:
8
+ TRAIN: ("objects365_train", "v3det_train","openimages_train",)
9
+ TEST: ()
10
+ TEST:
11
+ EVAL_PERIOD: 0
12
+ SOLVER:
13
+ STEPS: (350000, 420000)
14
+ MAX_ITER: 450000
15
+ INPUT:
16
+ CROP:
17
+ ENABLED: True
18
+ FORMAT: "RGB"
19
+ OUTPUT_DIR: './output/regionspot_alldata_bl'
configs/objects365_v3det_openimages_bl_336.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-RegionSpot.yaml"
2
+ MODEL:
3
+ WEIGHTS: "./output/regionspot_obj365_bl_336/model_final.pth"
4
+ CLIP_TYPE: CLIP_400M_Large_336
5
+ CLIP_INPUT_SIZE: 336
6
+ DATALOADER:
7
+ SAMPLER_TRAIN: "MultiDatasetSampler"
8
+ DATASETS:
9
+ TRAIN: ("objects365_train", "v3det_train","openimages_train",)
10
+ TEST: ()
11
+ TEST:
12
+ EVAL_PERIOD: 0
13
+ SOLVER:
14
+ STEPS: (350000, 420000)
15
+ MAX_ITER: 450000
16
+ INPUT:
17
+ CROP:
18
+ ENABLED: True
19
+ FORMAT: "RGB"
20
+ OUTPUT_DIR: './output/regionspot_alldata_bl_336'
demo.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import matplotlib.pyplot as plt
4
+ from regionspot.modeling.regionspot import build_regionspot_model
5
+ from regionspot import RegionSpot_Predictor
6
+ # Function to show masks on an image
7
+ def show_mask(mask, ax, random_color=False):
8
+ if random_color:
9
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
10
+ else:
11
+ color = np.array([30/255, 144/255, 255/255, 0.6])
12
+ h, w = mask.shape[-2:]
13
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
14
+ ax.imshow(mask_image)
15
+
16
+ # Function to show points on an image
17
+ def show_points(coords, labels, ax, marker_size=375):
18
+ pos_points = coords[labels == 1]
19
+ neg_points = coords[labels == 0]
20
+ ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
21
+ ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
22
+
23
+ # Function to show bounding boxes on an image
24
+ def show_box(box, ax):
25
+ x0, y0 = box[0], box[1]
26
+ w, h = box[2] - x0, box[3] - y0
27
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor='none', lw=2))
28
+
29
+ # Read image and set up model
30
+ image = cv2.imread('assets/image.jpg')
31
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert image to RGB format
32
+ # Multiple boxes
33
+ box_prompt = np.array([[64, 926, 804, 1978], [1237, 490, 1615, 771.], [1510, 64, 1670, 167]])
34
+ ckpt_path = '/path/to/model_weights.pth'
35
+ clip_type = 'CLIP_400M_Large_336'
36
+ clip_input_size = 336
37
+ custom_vocabulary = ["Smoothie bowl", "Banana", "Strawberry", "Chia seeds", "Shredded coconut", "Wooden spoons", "Grapefruit", "Goji berries", "Flaxseeds seeds"]
38
+
39
+ # Build and initialize the model
40
+ model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path, custom_vocabulary=custom_vocabulary)
41
+
42
+ # Create predictor and set image
43
+ predictor = RegionSpot_Predictor(model.cuda())
44
+ predictor.set_image(image, clip_input_size=clip_input_size)
45
+
46
+ # Prediction based on box prompt
47
+ masks, mask_iou_score, class_score, class_index = predictor.predict(
48
+ point_coords=None,
49
+ point_labels=None,
50
+ box=box_prompt,
51
+ multimask_output=False,
52
+ )
53
+ # Extract class name and display image with masks and box
54
+ fig, ax = plt.subplots(figsize=(10, 10))
55
+ ax.imshow(image)
56
+ for idx in range(len(box_prompt)):
57
+ show_mask(masks[idx], ax)
58
+ show_box(box_prompt[idx], ax) # Assuming box_prompt contains all your boxes
59
+ # You might want to modify the text display for multiple classes as well
60
+ class_name = custom_vocabulary[int(class_index[idx])]
61
+ ax.text(box_prompt[idx][0], box_prompt[idx][1] - 10, class_name, color='white', fontsize=14, bbox=dict(facecolor='green', edgecolor='green', alpha=0.6))
62
+
63
+ ax.axis('off')
64
+ plt.show()
65
+ fig.savefig('result.png')
66
+ plt.close(fig)
67
+
flagged/input_img/0fce6cef302bd30bbf85/000000052891.jpg ADDED
flagged/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ input_img,output,flag,username,timestamp
2
+ "{""path"":""flagged\\input_img\\0fce6cef302bd30bbf85\\000000052891.jpg"",""url"":""http://127.0.0.1:7862/file=C:\\Users\\10051\\AppData\\Local\\Temp\\gradio\\f11efb7c9dd110c5865f9afd384282cda8ca1f25\\000000052891.jpg"",""size"":153377,""orig_name"":""000000052891.jpg"",""mime_type"":""""}","{""path"":""flagged\\output\\440681fbd96cfcf67ac5\\image.png"",""url"":null,""size"":null,""orig_name"":null,""mime_type"":null}",,,2023-11-10 12:08:05.538914
flagged/output/440681fbd96cfcf67ac5/image.png ADDED
images/000000030494.jpg ADDED
images/000000052891.jpg ADDED
images/20231108222434.jpg ADDED
images/20231108222549.jpg ADDED
images/20231108223144.jpg ADDED
images/dog.jpg ADDED
images/fish.jpeg ADDED
images/groceries.jpg ADDED
images/images/truck.jpg ADDED
images/pic1.jpg ADDED
images/pic2.png ADDED

Git LFS Details

  • SHA256: 7b25da631e639ba7d5ef6446114a293cbd77411d6cbb8de72aa0d5aed73f3dfb
  • Pointer size: 132 Bytes
  • Size of remote file: 6.29 MB
images/pic3.png ADDED

Git LFS Details

  • SHA256: 9d760b68f8df7d5c3a084c751fceeeff60506a6fcb5fe3a72f95a4ce740e774c
  • Pointer size: 132 Bytes
  • Size of remote file: 1.56 MB
images/pic4.png ADDED
images/pic5.png ADDED
images/truck.jpg ADDED
images/truck2.png ADDED
tools/re_save_ckpt.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ pretrain_ckpt = './pretrained_model/model_final.pth'
4
+ checkpoint = torch.load(pretrain_ckpt, map_location='cpu')
5
+
6
+ # Remove specific keys from the top-level dictionary
7
+ top_level_keys_to_remove = ['trainer', 'iteration']
8
+ for key in top_level_keys_to_remove:
9
+ if key in checkpoint:
10
+ del checkpoint[key]
11
+
12
+ # Remove keys that start with 'clip_model' and 'sam' from the checkpoint's 'model' dictionary
13
+ model_keys_to_remove = ['model.clip_model', 'model.sam']
14
+ for key in list(checkpoint['model'].keys()): # Use list to copy keys
15
+ if any(key.startswith(to_remove) for to_remove in model_keys_to_remove):
16
+ print(key)
17
+ del checkpoint['model'][key]
18
+
19
+ # Save the modified checkpoint back to a file
20
+ modified_ckpt_path = './pretrained_model/model_final_modified.pth'
21
+ torch.save(checkpoint, modified_ckpt_path)
22
+ print(checkpoint['model'].keys())
train_net.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
3
+
4
+ This script is a simplified version of the training script in detectron2/tools.
5
+ """
6
+ import os
7
+ import itertools
8
+ import weakref
9
+ from typing import Any, Dict, List, Set
10
+ import logging
11
+ from collections import OrderedDict
12
+
13
+ import torch
14
+ from fvcore.nn.precise_bn import get_bn_modules
15
+
16
+ import detectron2.utils.comm as comm
17
+ from detectron2.utils.logger import setup_logger
18
+ from detectron2.checkpoint import DetectionCheckpointer
19
+ from detectron2.config import get_cfg
20
+ from detectron2.data import build_detection_train_loader
21
+ from regionspot import build_custom_train_loader
22
+
23
+ from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch, create_ddp_model, \
24
+ AMPTrainer, SimpleTrainer, hooks
25
+ from detectron2.evaluation import COCOEvaluator, LVISEvaluator, verify_results
26
+ from detectron2.solver.build import maybe_add_gradient_clipping
27
+ from detectron2.modeling import build_model
28
+ from regionspot.data import objects365
29
+ from regionspot.data import openimages
30
+ from regionspot.data import v3det
31
+
32
+
33
+ from regionspot import RegionSpotDatasetMapper, add_regionspot_config, RegionSpotWithTTA
34
+ from regionspot.util.model_ema import add_model_ema_configs, may_build_model_ema, may_get_ema_checkpointer, EMAHook, \
35
+ apply_model_ema_and_restore, EMADetectionCheckpointer
36
+
37
+
38
+ class Trainer(DefaultTrainer):
39
+ """ Extension of the Trainer class adapted to RegionSpot. """
40
+
41
+ def __init__(self, cfg):
42
+ """
43
+ Args:
44
+ cfg (CfgNode):
45
+ """
46
+ super(DefaultTrainer, self).__init__() # call grandfather's `__init__` while avoid father's `__init()`
47
+ logger = logging.getLogger("detectron2")
48
+ if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
49
+ setup_logger()
50
+ cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())
51
+ # Assume these objects must be constructed in this order.
52
+ model = self.build_model(cfg)
53
+ optimizer = self.build_optimizer(cfg, model)
54
+ data_loader = self.build_train_loader(cfg)
55
+
56
+ model = create_ddp_model(model, broadcast_buffers=False)
57
+ self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
58
+ model, data_loader, optimizer
59
+ )
60
+
61
+ self.scheduler = self.build_lr_scheduler(cfg, optimizer)
62
+
63
+ ########## EMA ############
64
+ kwargs = {
65
+ 'trainer': weakref.proxy(self),
66
+ }
67
+ kwargs.update(may_get_ema_checkpointer(cfg, model))
68
+ self.checkpointer = DetectionCheckpointer(
69
+ # Assume you want to save checkpoints together with logs/statistics
70
+ model,
71
+ cfg.OUTPUT_DIR,
72
+ **kwargs,
73
+ # trainer=weakref.proxy(self),
74
+ )
75
+ self.start_iter = 0
76
+ self.max_iter = cfg.SOLVER.MAX_ITER
77
+ self.cfg = cfg
78
+
79
+ self.register_hooks(self.build_hooks())
80
+
81
+ @classmethod
82
+ def build_model(cls, cfg):
83
+ """
84
+ Returns:
85
+ torch.nn.Module:
86
+
87
+ It now calls :func:`detectron2.modeling.build_model`.
88
+ Overwrite it if you'd like a different model.
89
+ """
90
+ model = build_model(cfg)
91
+ logger = logging.getLogger(__name__)
92
+ logger.info("Model:\n{}".format(model))
93
+ # setup EMA
94
+ may_build_model_ema(cfg, model)
95
+ return model
96
+
97
+ @classmethod
98
+ def build_evaluator(cls, cfg, dataset_name, output_folder=None):
99
+ """
100
+ Create evaluator(s) for a given dataset.
101
+ This uses the special metadata "evaluator_type" associated with each builtin dataset.
102
+ For your own dataset, you can simply create an evaluator manually in your
103
+ script and do not have to worry about the hacky if-else logic here.
104
+ """
105
+ if output_folder is None:
106
+ output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
107
+ if 'lvis' in dataset_name:
108
+ return LVISEvaluator(dataset_name, cfg, True, output_folder)
109
+ else:
110
+ return COCOEvaluator(dataset_name, cfg, True, output_folder)
111
+
112
+ @classmethod
113
+ def build_train_loader(cls, cfg):
114
+ mapper = RegionSpotDatasetMapper(cfg, is_train=True)
115
+ if cfg.DATALOADER.SAMPLER_TRAIN in ['TrainingSampler', 'RepeatFactorTrainingSampler']:
116
+ data_loader = build_detection_train_loader(cfg, mapper=mapper)
117
+ else:
118
+ data_loader = build_custom_train_loader(cfg, mapper=mapper)
119
+ return data_loader
120
+ @classmethod
121
+ def build_optimizer(cls, cfg, model):
122
+ params: List[Dict[str, Any]] = []
123
+ memo: Set[torch.nn.parameter.Parameter] = set()
124
+ for key, value in model.named_parameters(recurse=True):
125
+ if not value.requires_grad:
126
+ continue
127
+ # Avoid duplicating parameters
128
+ if value in memo:
129
+ continue
130
+ memo.add(value)
131
+ lr = cfg.SOLVER.BASE_LR
132
+ weight_decay = cfg.SOLVER.WEIGHT_DECAY
133
+ if "backbone" in key:
134
+ lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER
135
+ params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]
136
+
137
+ def maybe_add_full_model_gradient_clipping(optim): # optim: the optimizer class
138
+ # detectron2 doesn't have full model gradient clipping now
139
+ clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
140
+ enable = (
141
+ cfg.SOLVER.CLIP_GRADIENTS.ENABLED
142
+ and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
143
+ and clip_norm_val > 0.0
144
+ )
145
+
146
+ class FullModelGradientClippingOptimizer(optim):
147
+ def step(self, closure=None):
148
+ all_params = itertools.chain(*[x["params"] for x in self.param_groups])
149
+ torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
150
+ super().step(closure=closure)
151
+
152
+ return FullModelGradientClippingOptimizer if enable else optim
153
+
154
+ optimizer_type = cfg.SOLVER.OPTIMIZER
155
+ if optimizer_type == "SGD":
156
+ optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
157
+ params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
158
+ )
159
+ elif optimizer_type == "ADAMW":
160
+ optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
161
+ params, cfg.SOLVER.BASE_LR
162
+ )
163
+ else:
164
+ raise NotImplementedError(f"no optimizer type {optimizer_type}")
165
+ if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
166
+ optimizer = maybe_add_gradient_clipping(cfg, optimizer)
167
+ return optimizer
168
+
169
+ @classmethod
170
+ def ema_test(cls, cfg, model, evaluators=None):
171
+ # model with ema weights
172
+ logger = logging.getLogger("detectron2.trainer")
173
+ if cfg.MODEL_EMA.ENABLED:
174
+ logger.info("Run evaluation with EMA.")
175
+ with apply_model_ema_and_restore(model):
176
+ results = cls.test(cfg, model, evaluators=evaluators)
177
+ else:
178
+ results = cls.test(cfg, model, evaluators=evaluators)
179
+ return results
180
+
181
+ @classmethod
182
+ def test_with_TTA(cls, cfg, model):
183
+ logger = logging.getLogger("detectron2.trainer")
184
+ logger.info("Running inference with test-time augmentation ...")
185
+ model = RegionSpotWithTTA(cfg, model)
186
+ evaluators = [
187
+ cls.build_evaluator(
188
+ cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
189
+ )
190
+ for name in cfg.DATASETS.TEST
191
+ ]
192
+ if cfg.MODEL_EMA.ENABLED:
193
+ cls.ema_test(cfg, model, evaluators)
194
+ else:
195
+ res = cls.test(cfg, model, evaluators)
196
+ res = OrderedDict({k + "_TTA": v for k, v in res.items()})
197
+ return res
198
+
199
+ def build_hooks(self):
200
+ """
201
+ Build a list of default hooks, including timing, evaluation,
202
+ checkpointing, lr scheduling, precise BN, writing events.
203
+
204
+ Returns:
205
+ list[HookBase]:
206
+ """
207
+ cfg = self.cfg.clone()
208
+ cfg.defrost()
209
+ cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
210
+
211
+ ret = [
212
+ hooks.IterationTimer(),
213
+ EMAHook(self.cfg, self.model) if cfg.MODEL_EMA.ENABLED else None, # EMA hook
214
+ hooks.LRScheduler(),
215
+ hooks.PreciseBN(
216
+ # Run at the same freq as (but before) evaluation.
217
+ cfg.TEST.EVAL_PERIOD,
218
+ self.model,
219
+ # Build a new data loader to not affect training
220
+ self.build_train_loader(cfg),
221
+ cfg.TEST.PRECISE_BN.NUM_ITER,
222
+ )
223
+ if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model)
224
+ else None,
225
+ ]
226
+
227
+ # Do PreciseBN before checkpointer, because it updates the model and need to
228
+ # be saved by checkpointer.
229
+ # This is not always the best: if checkpointing has a different frequency,
230
+ # some checkpoints may have more precise statistics than others.
231
+ if comm.is_main_process():
232
+ ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
233
+
234
+ def test_and_save_results():
235
+ self._last_eval_results = self.test(self.cfg, self.model)
236
+ return self._last_eval_results
237
+
238
+ # Do evaluation after checkpointer, because then if it fails,
239
+ # we can use the saved checkpoint to debug.
240
+ ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
241
+
242
+ if comm.is_main_process():
243
+ # Here the default print/log frequency of each writer is used.
244
+ # run writers in the end, so that evaluation metrics are written
245
+ ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
246
+ return ret
247
+
248
+
249
+ def setup(args):
250
+ """
251
+ Create configs and perform basic setups.
252
+ """
253
+ cfg = get_cfg()
254
+ add_regionspot_config(cfg)
255
+ add_model_ema_configs(cfg)
256
+ cfg.merge_from_file(args.config_file)
257
+ cfg.merge_from_list(args.opts)
258
+ cfg.freeze()
259
+ default_setup(cfg, args)
260
+ return cfg
261
+
262
+
263
+ def main(args):
264
+ cfg = setup(args)
265
+
266
+ if args.eval_only:
267
+ model = Trainer.build_model(cfg)
268
+ kwargs = may_get_ema_checkpointer(cfg, model)
269
+ if cfg.MODEL_EMA.ENABLED:
270
+ EMADetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR, **kwargs).resume_or_load(cfg.MODEL.WEIGHTS,
271
+ resume=args.resume)
272
+ else:
273
+ DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR, **kwargs).resume_or_load(cfg.MODEL.WEIGHTS,
274
+ resume=args.resume)
275
+ res = Trainer.ema_test(cfg, model)
276
+ if cfg.TEST.AUG.ENABLED:
277
+ res.update(Trainer.test_with_TTA(cfg, model))
278
+ if comm.is_main_process():
279
+ verify_results(cfg, res)
280
+ return res
281
+
282
+ trainer = Trainer(cfg)
283
+ trainer.resume_or_load(resume=args.resume)
284
+ return trainer.train()
285
+
286
+
287
+ if __name__ == "__main__":
288
+ args = default_argument_parser().parse_args()
289
+ print("Command Line Args:", args)
290
+ launch(
291
+ main,
292
+ args.num_gpus,
293
+ num_machines=args.num_machines,
294
+ machine_rank=args.machine_rank,
295
+ dist_url=args.dist_url,
296
+ args=(args,),
297
+ )
utils/__pycache__/tools.cpython-38.pyc ADDED
Binary file (12.7 kB). View file
 
utils/__pycache__/tools_gradio.cpython-38.pyc ADDED
Binary file (4.76 kB). View file
 
utils/tools.py ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ import matplotlib.pyplot as plt
4
+ import cv2
5
+ import torch
6
+ import os
7
+ import sys
8
+ import clip
9
+
10
+
11
+ def convert_box_xywh_to_xyxy(box):
12
+ if len(box) == 4:
13
+ return [box[0], box[1], box[0] + box[2], box[1] + box[3]]
14
+ else:
15
+ result = []
16
+ for b in box:
17
+ b = convert_box_xywh_to_xyxy(b)
18
+ result.append(b)
19
+ return result
20
+
21
+
22
+ def segment_image(image, bbox):
23
+ image_array = np.array(image)
24
+ segmented_image_array = np.zeros_like(image_array)
25
+ x1, y1, x2, y2 = bbox
26
+ segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
27
+ segmented_image = Image.fromarray(segmented_image_array)
28
+ black_image = Image.new("RGB", image.size, (255, 255, 255))
29
+ # transparency_mask = np.zeros_like((), dtype=np.uint8)
30
+ transparency_mask = np.zeros(
31
+ (image_array.shape[0], image_array.shape[1]), dtype=np.uint8
32
+ )
33
+ transparency_mask[y1:y2, x1:x2] = 255
34
+ transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
35
+ black_image.paste(segmented_image, mask=transparency_mask_image)
36
+ return black_image
37
+
38
+
39
+ def format_results(result, filter=0):
40
+ annotations = []
41
+ n = len(result.masks.data)
42
+ for i in range(n):
43
+ annotation = {}
44
+ mask = result.masks.data[i] == 1.0
45
+
46
+ if torch.sum(mask) < filter:
47
+ continue
48
+ annotation["id"] = i
49
+ annotation["segmentation"] = mask.cpu().numpy()
50
+ annotation["bbox"] = result.boxes.data[i]
51
+ annotation["score"] = result.boxes.conf[i]
52
+ annotation["area"] = annotation["segmentation"].sum()
53
+ annotations.append(annotation)
54
+ return annotations
55
+
56
+
57
+ def filter_masks(annotations): # filter the overlap mask
58
+ annotations.sort(key=lambda x: x["area"], reverse=True)
59
+ to_remove = set()
60
+ for i in range(0, len(annotations)):
61
+ a = annotations[i]
62
+ for j in range(i + 1, len(annotations)):
63
+ b = annotations[j]
64
+ if i != j and j not in to_remove:
65
+ # check if
66
+ if b["area"] < a["area"]:
67
+ if (a["segmentation"] & b["segmentation"]).sum() / b[
68
+ "segmentation"
69
+ ].sum() > 0.8:
70
+ to_remove.add(j)
71
+
72
+ return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
73
+
74
+
75
+ def get_bbox_from_mask(mask):
76
+ mask = mask.astype(np.uint8)
77
+ contours, hierarchy = cv2.findContours(
78
+ mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
79
+ )
80
+ x1, y1, w, h = cv2.boundingRect(contours[0])
81
+ x2, y2 = x1 + w, y1 + h
82
+ if len(contours) > 1:
83
+ for b in contours:
84
+ x_t, y_t, w_t, h_t = cv2.boundingRect(b)
85
+ # 将多个bbox合并成一个
86
+ x1 = min(x1, x_t)
87
+ y1 = min(y1, y_t)
88
+ x2 = max(x2, x_t + w_t)
89
+ y2 = max(y2, y_t + h_t)
90
+ h = y2 - y1
91
+ w = x2 - x1
92
+ return [x1, y1, x2, y2]
93
+
94
+
95
+ def fast_process(
96
+ annotations, args, mask_random_color, bbox=None, points=None, edges=False
97
+ ):
98
+ if isinstance(annotations[0], dict):
99
+ annotations = [annotation["segmentation"] for annotation in annotations]
100
+ result_name = os.path.basename(args.img_path)
101
+ image = cv2.imread(args.img_path)
102
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
103
+ original_h = image.shape[0]
104
+ original_w = image.shape[1]
105
+ if sys.platform == "darwin":
106
+ plt.switch_backend("TkAgg")
107
+ plt.figure(figsize=(original_w/100, original_h/100))
108
+ # Add subplot with no margin.
109
+ plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
110
+ plt.margins(0, 0)
111
+ plt.gca().xaxis.set_major_locator(plt.NullLocator())
112
+ plt.gca().yaxis.set_major_locator(plt.NullLocator())
113
+ plt.imshow(image)
114
+ if args.better_quality == True:
115
+ if isinstance(annotations[0], torch.Tensor):
116
+ annotations = np.array(annotations.cpu())
117
+ for i, mask in enumerate(annotations):
118
+ mask = cv2.morphologyEx(
119
+ mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
120
+ )
121
+ annotations[i] = cv2.morphologyEx(
122
+ mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
123
+ )
124
+ if args.device == "cpu":
125
+ annotations = np.array(annotations)
126
+ fast_show_mask(
127
+ annotations,
128
+ plt.gca(),
129
+ random_color=mask_random_color,
130
+ bbox=bbox,
131
+ points=points,
132
+ point_label=args.point_label,
133
+ retinamask=args.retina,
134
+ target_height=original_h,
135
+ target_width=original_w,
136
+ )
137
+ else:
138
+ if isinstance(annotations[0], np.ndarray):
139
+ annotations = torch.from_numpy(annotations)
140
+ fast_show_mask_gpu(
141
+ annotations,
142
+ plt.gca(),
143
+ random_color=args.randomcolor,
144
+ bbox=bbox,
145
+ points=points,
146
+ point_label=args.point_label,
147
+ retinamask=args.retina,
148
+ target_height=original_h,
149
+ target_width=original_w,
150
+ )
151
+ if isinstance(annotations, torch.Tensor):
152
+ annotations = annotations.cpu().numpy()
153
+ if args.withContours == True:
154
+ contour_all = []
155
+ temp = np.zeros((original_h, original_w, 1))
156
+ for i, mask in enumerate(annotations):
157
+ if type(mask) == dict:
158
+ mask = mask["segmentation"]
159
+ annotation = mask.astype(np.uint8)
160
+ if args.retina == False:
161
+ annotation = cv2.resize(
162
+ annotation,
163
+ (original_w, original_h),
164
+ interpolation=cv2.INTER_NEAREST,
165
+ )
166
+ contours, hierarchy = cv2.findContours(
167
+ annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
168
+ )
169
+ for contour in contours:
170
+ contour_all.append(contour)
171
+ cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
172
+ color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
173
+ contour_mask = temp / 255 * color.reshape(1, 1, -1)
174
+ plt.imshow(contour_mask)
175
+
176
+ save_path = args.output
177
+ if not os.path.exists(save_path):
178
+ os.makedirs(save_path)
179
+ plt.axis("off")
180
+ fig = plt.gcf()
181
+ plt.draw()
182
+
183
+ try:
184
+ buf = fig.canvas.tostring_rgb()
185
+ except AttributeError:
186
+ fig.canvas.draw()
187
+ buf = fig.canvas.tostring_rgb()
188
+
189
+ cols, rows = fig.canvas.get_width_height()
190
+ img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
191
+ cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
192
+
193
+
194
+ # CPU post process
195
+ def fast_show_mask(
196
+ annotation,
197
+ ax,
198
+ random_color=False,
199
+ bbox=None,
200
+ points=None,
201
+ point_label=None,
202
+ retinamask=True,
203
+ target_height=960,
204
+ target_width=960,
205
+ ):
206
+ msak_sum = annotation.shape[0]
207
+ height = annotation.shape[1]
208
+ weight = annotation.shape[2]
209
+ # 将annotation 按照面积 排序
210
+ areas = np.sum(annotation, axis=(1, 2))
211
+ sorted_indices = np.argsort(areas)
212
+ annotation = annotation[sorted_indices]
213
+
214
+ index = (annotation != 0).argmax(axis=0)
215
+ if random_color == True:
216
+ color = np.random.random((msak_sum, 1, 1, 3))
217
+ else:
218
+ color = np.ones((msak_sum, 1, 1, 3)) * np.array(
219
+ [30 / 255, 144 / 255, 255 / 255]
220
+ )
221
+ transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
222
+ visual = np.concatenate([color, transparency], axis=-1)
223
+ mask_image = np.expand_dims(annotation, -1) * visual
224
+
225
+ show = np.zeros((height, weight, 4))
226
+ h_indices, w_indices = np.meshgrid(
227
+ np.arange(height), np.arange(weight), indexing="ij"
228
+ )
229
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
230
+ # 使用向量化索引更新show的值
231
+ show[h_indices, w_indices, :] = mask_image[indices]
232
+ if bbox is not None:
233
+ x1, y1, x2, y2 = bbox
234
+ ax.add_patch(
235
+ plt.Rectangle(
236
+ (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
237
+ )
238
+ )
239
+ # draw point
240
+ if points is not None:
241
+ plt.scatter(
242
+ [point[0] for i, point in enumerate(points) if point_label[i] == 1],
243
+ [point[1] for i, point in enumerate(points) if point_label[i] == 1],
244
+ s=20,
245
+ c="y",
246
+ )
247
+ plt.scatter(
248
+ [point[0] for i, point in enumerate(points) if point_label[i] == 0],
249
+ [point[1] for i, point in enumerate(points) if point_label[i] == 0],
250
+ s=20,
251
+ c="m",
252
+ )
253
+
254
+ if retinamask == False:
255
+ show = cv2.resize(
256
+ show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
257
+ )
258
+ ax.imshow(show)
259
+
260
+
261
+ def fast_show_mask_gpu(
262
+ annotation,
263
+ ax,
264
+ random_color=False,
265
+ bbox=None,
266
+ points=None,
267
+ point_label=None,
268
+ retinamask=True,
269
+ target_height=960,
270
+ target_width=960,
271
+ ):
272
+ msak_sum = annotation.shape[0]
273
+ height = annotation.shape[1]
274
+ weight = annotation.shape[2]
275
+ areas = torch.sum(annotation, dim=(1, 2))
276
+ sorted_indices = torch.argsort(areas, descending=False)
277
+ annotation = annotation[sorted_indices]
278
+ # 找每个位置第一个非零值下标
279
+ index = (annotation != 0).to(torch.long).argmax(dim=0)
280
+ if random_color == True:
281
+ color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
282
+ else:
283
+ color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
284
+ [30 / 255, 144 / 255, 255 / 255]
285
+ ).to(annotation.device)
286
+ transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
287
+ visual = torch.cat([color, transparency], dim=-1)
288
+ mask_image = torch.unsqueeze(annotation, -1) * visual
289
+ # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
290
+ show = torch.zeros((height, weight, 4)).to(annotation.device)
291
+ h_indices, w_indices = torch.meshgrid(
292
+ torch.arange(height), torch.arange(weight), indexing="ij"
293
+ )
294
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
295
+ # 使用向量化索引更新show的值
296
+ show[h_indices, w_indices, :] = mask_image[indices]
297
+ show_cpu = show.cpu().numpy()
298
+ if bbox is not None:
299
+ x1, y1, x2, y2 = bbox
300
+ ax.add_patch(
301
+ plt.Rectangle(
302
+ (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
303
+ )
304
+ )
305
+ # draw point
306
+ if points is not None:
307
+ plt.scatter(
308
+ [point[0] for i, point in enumerate(points) if point_label[i] == 1],
309
+ [point[1] for i, point in enumerate(points) if point_label[i] == 1],
310
+ s=20,
311
+ c="y",
312
+ )
313
+ plt.scatter(
314
+ [point[0] for i, point in enumerate(points) if point_label[i] == 0],
315
+ [point[1] for i, point in enumerate(points) if point_label[i] == 0],
316
+ s=20,
317
+ c="m",
318
+ )
319
+ if retinamask == False:
320
+ show_cpu = cv2.resize(
321
+ show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
322
+ )
323
+ ax.imshow(show_cpu)
324
+
325
+
326
+ # clip
327
+ @torch.no_grad()
328
+ def retriev(
329
+ model, preprocess, elements: [Image.Image], search_text: str, device
330
+ ):
331
+ preprocessed_images = [preprocess(image).to(device) for image in elements]
332
+ tokenized_text = clip.tokenize([search_text]).to(device)
333
+ stacked_images = torch.stack(preprocessed_images)
334
+ image_features = model.encode_image(stacked_images)
335
+ text_features = model.encode_text(tokenized_text)
336
+ image_features /= image_features.norm(dim=-1, keepdim=True)
337
+ text_features /= text_features.norm(dim=-1, keepdim=True)
338
+ probs = 100.0 * image_features @ text_features.T
339
+ return probs[:, 0].softmax(dim=0)
340
+
341
+
342
+ def crop_image(annotations, image_like):
343
+ if isinstance(image_like, str):
344
+ image = Image.open(image_like)
345
+ else:
346
+ image = image_like
347
+ ori_w, ori_h = image.size
348
+ mask_h, mask_w = annotations[0]["segmentation"].shape
349
+ if ori_w != mask_w or ori_h != mask_h:
350
+ image = image.resize((mask_w, mask_h))
351
+ cropped_boxes = []
352
+ cropped_images = []
353
+ not_crop = []
354
+ origin_id = []
355
+ for _, mask in enumerate(annotations):
356
+ if np.sum(mask["segmentation"]) <= 100:
357
+ continue
358
+ origin_id.append(_)
359
+ bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
360
+ cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
361
+ # cropped_boxes.append(segment_image(image,mask["segmentation"]))
362
+ cropped_images.append(bbox) # 保存裁剪的图片的bbox
363
+ return cropped_boxes, cropped_images, not_crop, origin_id, annotations
364
+
365
+
366
+ def box_prompt(masks, bbox, target_height, target_width):
367
+ h = masks.shape[1]
368
+ w = masks.shape[2]
369
+ if h != target_height or w != target_width:
370
+ bbox = [
371
+ int(bbox[0] * w / target_width),
372
+ int(bbox[1] * h / target_height),
373
+ int(bbox[2] * w / target_width),
374
+ int(bbox[3] * h / target_height),
375
+ ]
376
+ bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
377
+ bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
378
+ bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
379
+ bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
380
+
381
+ # IoUs = torch.zeros(len(masks), dtype=torch.float32)
382
+ bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
383
+
384
+ masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
385
+ orig_masks_area = torch.sum(masks, dim=(1, 2))
386
+
387
+ union = bbox_area + orig_masks_area - masks_area
388
+ IoUs = masks_area / union
389
+ max_iou_index = torch.argmax(IoUs)
390
+
391
+ return masks[max_iou_index].cpu().numpy(), max_iou_index
392
+
393
+
394
+ def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理
395
+ h = masks[0]["segmentation"].shape[0]
396
+ w = masks[0]["segmentation"].shape[1]
397
+ if h != target_height or w != target_width:
398
+ points = [
399
+ [int(point[0] * w / target_width), int(point[1] * h / target_height)]
400
+ for point in points
401
+ ]
402
+ onemask = np.zeros((h, w))
403
+ masks = sorted(masks, key=lambda x: x['area'], reverse=True)
404
+ for i, annotation in enumerate(masks):
405
+ if type(annotation) == dict:
406
+ mask = annotation['segmentation']
407
+ else:
408
+ mask = annotation
409
+ for i, point in enumerate(points):
410
+ if mask[point[1], point[0]] == 1 and point_label[i] == 1:
411
+ onemask[mask] = 1
412
+ if mask[point[1], point[0]] == 1 and point_label[i] == 0:
413
+ onemask[mask] = 0
414
+ onemask = onemask >= 1
415
+ return onemask, 0
416
+
417
+
418
+ def text_prompt(annotations, text, img_path, device, wider=False, threshold=0.9):
419
+ cropped_boxes, cropped_images, not_crop, origin_id, annotations_ = crop_image(
420
+ annotations, img_path
421
+ )
422
+ clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
423
+ scores = retriev(
424
+ clip_model, preprocess, cropped_boxes, text, device=device
425
+ )
426
+ max_idx = scores.argsort()
427
+ max_idx = max_idx[-1]
428
+ max_idx = origin_id[int(max_idx)]
429
+
430
+ # find the biggest mask which contains the mask with max score
431
+ if wider:
432
+ mask0 = annotations_[max_idx]["segmentation"]
433
+ area0 = np.sum(mask0)
434
+ areas = [(i, np.sum(mask["segmentation"])) for i, mask in enumerate(annotations_) if i in origin_id]
435
+ areas = sorted(areas, key=lambda area: area[1], reverse=True)
436
+ indices = [area[0] for area in areas]
437
+ for index in indices:
438
+ if index == max_idx or np.sum(annotations_[index]["segmentation"] & mask0) / area0 > threshold:
439
+ max_idx = index
440
+ break
441
+
442
+ return annotations_[max_idx]["segmentation"], max_idx
utils/tools_gradio.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ import matplotlib.pyplot as plt
4
+ import cv2
5
+ import torch
6
+
7
+ fdic = {
8
+ "family" : "Impact",
9
+ "style" : "italic",
10
+ "size" : 15,
11
+ "color" : "yellow",
12
+ "weight" : "bold"
13
+ }
14
+
15
+ def fast_process(
16
+ annotations,
17
+ image,
18
+ device,
19
+ scale,
20
+ better_quality=False,
21
+ mask_random_color=True,
22
+ bbox=None,
23
+ use_retina=True,
24
+ withContours=True,
25
+ label = None,
26
+ ):
27
+ if isinstance(annotations[0], dict):
28
+ annotations = [annotation['segmentation'] for annotation in annotations]
29
+
30
+ original_h = image.height
31
+ original_w = image.width
32
+ if better_quality:
33
+ if isinstance(annotations[0], torch.Tensor):
34
+ annotations = np.array(annotations.cpu())
35
+ for i, mask in enumerate(annotations):
36
+ mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
37
+ annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
38
+ if device == 'cpu':
39
+ annotations = np.array(annotations)
40
+ inner_mask = fast_show_mask(
41
+ annotations,
42
+ plt.gca(),
43
+ random_color=mask_random_color,
44
+ bbox=bbox,
45
+ retinamask=use_retina,
46
+ target_height=original_h,
47
+ target_width=original_w,
48
+ label = label,
49
+ )
50
+ else:
51
+ if isinstance(annotations[0], np.ndarray):
52
+ annotations = torch.from_numpy(annotations)
53
+ inner_mask, figure = fast_show_mask_gpu(
54
+ annotations,
55
+ plt.gca(),
56
+ random_color=mask_random_color,
57
+ bbox=bbox,
58
+ retinamask=use_retina,
59
+ target_height=original_h,
60
+ target_width=original_w,
61
+ label = label,
62
+ )
63
+ if isinstance(annotations, torch.Tensor):
64
+ annotations = annotations.cpu().numpy()
65
+
66
+ if withContours:
67
+ contour_all = []
68
+ temp = np.zeros((original_h, original_w, 1))
69
+ for i, mask in enumerate(annotations):
70
+ if type(mask) == dict:
71
+ mask = mask['segmentation']
72
+ annotation = mask.astype(np.uint8)
73
+ if use_retina == False:
74
+ annotation = cv2.resize(
75
+ annotation,
76
+ (original_w, original_h),
77
+ interpolation=cv2.INTER_NEAREST,
78
+ )
79
+ contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
80
+ for contour in contours:
81
+ contour_all.append(contour)
82
+ cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
83
+ color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
84
+ contour_mask = temp / 255 * color.reshape(1, 1, -1)
85
+
86
+ image = image.convert('RGBA')
87
+ overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
88
+ image.paste(overlay_inner, (0, 0), overlay_inner)
89
+
90
+ if withContours:
91
+ overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
92
+ image.paste(overlay_contour, (0, 0), overlay_contour)
93
+
94
+ plt.figure(figsize=(16, 10))
95
+ plt.imshow(image)
96
+ ax = plt.gca()
97
+ if bbox is not None:
98
+ x1, y1, x2, y2 = bbox
99
+ ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
100
+ ax.text(x1, y1, f"{label}", fontdict=fdic)
101
+ pic = plt.gcf()
102
+ pic.canvas.draw()
103
+ w,h = pic.canvas.get_width_height()
104
+ image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
105
+
106
+ return image
107
+
108
+
109
+ # CPU post process
110
+ def fast_show_mask(
111
+ annotation,
112
+ ax,
113
+ random_color=False,
114
+ bbox=None,
115
+ retinamask=True,
116
+ target_height=960,
117
+ target_width=960,
118
+ label = None,
119
+ ):
120
+ mask_sum = annotation.shape[0]
121
+ height = annotation.shape[1]
122
+ weight = annotation.shape[2]
123
+ # 将annotation 按照面积 排序
124
+ areas = np.sum(annotation, axis=(1, 2))
125
+ sorted_indices = np.argsort(areas)[::1]
126
+ annotation = annotation[sorted_indices]
127
+
128
+ index = (annotation != 0).argmax(axis=0)
129
+ if random_color:
130
+ color = np.random.random((mask_sum, 1, 1, 3))
131
+ else:
132
+ color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
133
+ transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
134
+ visual = np.concatenate([color, transparency], axis=-1)
135
+ mask_image = np.expand_dims(annotation, -1) * visual
136
+
137
+ mask = np.zeros((height, weight, 4))
138
+
139
+ h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
140
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
141
+
142
+ mask[h_indices, w_indices, :] = mask_image[indices]
143
+ if bbox is not None:
144
+ x1, y1, x2, y2 = bbox
145
+ ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
146
+ # ax.text(x, y, f"{label}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
147
+ ax.text(x, y, f"{label}", fontdict=fdic)
148
+
149
+ if not retinamask:
150
+ mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
151
+
152
+ return mask
153
+
154
+
155
+ def fast_show_mask_gpu(
156
+ annotation,
157
+ ax,
158
+ random_color=False,
159
+ bbox=None,
160
+ retinamask=True,
161
+ target_height=960,
162
+ target_width=960,
163
+ label = None,
164
+ ):
165
+ device = annotation.device
166
+ mask_sum = annotation.shape[0]
167
+ height = annotation.shape[1]
168
+ weight = annotation.shape[2]
169
+ areas = torch.sum(annotation, dim=(1, 2))
170
+ sorted_indices = torch.argsort(areas, descending=False)
171
+ annotation = annotation[sorted_indices]
172
+ # 找每个位置第一个非零值下标
173
+ index = (annotation != 0).to(torch.long).argmax(dim=0)
174
+ if random_color:
175
+ color = torch.rand((mask_sum, 1, 1, 3)).to(device)
176
+ else:
177
+ color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
178
+ [30 / 255, 144 / 255, 255 / 255]
179
+ ).to(device)
180
+ transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
181
+ visual = torch.cat([color, transparency], dim=-1)
182
+ mask_image = torch.unsqueeze(annotation, -1) * visual
183
+ # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
184
+ mask = torch.zeros((height, weight, 4)).to(device)
185
+ h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
186
+ indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
187
+ # 使用向量化索引更新show的值
188
+ mask[h_indices, w_indices, :] = mask_image[indices]
189
+ mask_cpu = mask.cpu().numpy()
190
+ if bbox is not None:
191
+ x1, y1, x2, y2 = bbox
192
+ ax.add_patch(
193
+ plt.Rectangle(
194
+ (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=3
195
+ )
196
+ )
197
+ ax.text(x1, y1, f"{label}", fontdict=fdic)
198
+ # ax.text(x1, y1, f"{label}")
199
+ if not retinamask:
200
+ mask_cpu = cv2.resize(
201
+ mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
202
+ )
203
+ return mask_cpu, ax