Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#206
by
Peiiiiiiiiru
- opened
app.py
CHANGED
@@ -1,31 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
-
from live_preview_helpers import
|
9 |
|
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
torch.cuda.empty_cache()
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 2048
|
20 |
|
|
|
21 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
generator = torch.Generator().manual_seed(seed)
|
28 |
-
|
|
|
29 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
30 |
prompt=prompt,
|
31 |
guidance_scale=guidance_scale,
|
@@ -36,31 +47,33 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
|
|
36 |
output_type="pil",
|
37 |
good_vae=good_vae,
|
38 |
):
|
39 |
-
|
40 |
-
|
|
|
41 |
examples = [
|
42 |
"a tiny astronaut hatching from an egg on the moon",
|
43 |
"a cat holding a sign that says hello world",
|
44 |
"an anime illustration of a wiener schnitzel",
|
45 |
]
|
46 |
|
47 |
-
css="""
|
48 |
#col-container {
|
49 |
margin: 0 auto;
|
50 |
max-width: 520px;
|
51 |
}
|
52 |
"""
|
53 |
|
|
|
54 |
with gr.Blocks(css=css) as demo:
|
55 |
-
|
56 |
with gr.Column(elem_id="col-container"):
|
57 |
gr.Markdown(f"""# FLUX.1 [dev]
|
58 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
59 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]
|
|
|
|
|
60 |
""")
|
61 |
|
62 |
with gr.Row():
|
63 |
-
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
66 |
show_label=False,
|
@@ -68,72 +81,31 @@ with gr.Blocks(css=css) as demo:
|
|
68 |
placeholder="Enter your prompt",
|
69 |
container=False,
|
70 |
)
|
71 |
-
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
-
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
seed = gr.Slider(
|
79 |
-
label="Seed",
|
80 |
-
minimum=0,
|
81 |
-
maximum=MAX_SEED,
|
82 |
-
step=1,
|
83 |
-
value=0,
|
84 |
-
)
|
85 |
-
|
86 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
87 |
|
88 |
with gr.Row():
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
minimum=256,
|
93 |
-
maximum=MAX_IMAGE_SIZE,
|
94 |
-
step=32,
|
95 |
-
value=1024,
|
96 |
-
)
|
97 |
-
|
98 |
-
height = gr.Slider(
|
99 |
-
label="Height",
|
100 |
-
minimum=256,
|
101 |
-
maximum=MAX_IMAGE_SIZE,
|
102 |
-
step=32,
|
103 |
-
value=1024,
|
104 |
-
)
|
105 |
-
|
106 |
with gr.Row():
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
label="Guidance Scale",
|
110 |
-
minimum=1,
|
111 |
-
maximum=15,
|
112 |
-
step=0.1,
|
113 |
-
value=3.5,
|
114 |
-
)
|
115 |
-
|
116 |
-
num_inference_steps = gr.Slider(
|
117 |
-
label="Number of inference steps",
|
118 |
-
minimum=1,
|
119 |
-
maximum=50,
|
120 |
-
step=1,
|
121 |
-
value=28,
|
122 |
-
)
|
123 |
-
|
124 |
-
gr.Examples(
|
125 |
-
examples = examples,
|
126 |
-
fn = infer,
|
127 |
-
inputs = [prompt],
|
128 |
-
outputs = [result, seed],
|
129 |
-
cache_examples="lazy"
|
130 |
-
)
|
131 |
|
132 |
gr.on(
|
133 |
triggers=[run_button.click, prompt.submit],
|
134 |
-
fn
|
135 |
-
inputs
|
136 |
-
outputs
|
137 |
)
|
138 |
|
139 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
7 |
+
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
8 |
|
9 |
+
# 檢查設備是否可用 GPU
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# 載入模型,若需要 API Token,請加上 use_auth_token=True
|
14 |
+
try:
|
15 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
16 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae",
|
17 |
+
torch_dtype=dtype).to(device)
|
18 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
19 |
+
except Exception as e:
|
20 |
+
print(f"模型載入錯誤: {e}")
|
21 |
+
|
22 |
torch.cuda.empty_cache()
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
MAX_IMAGE_SIZE = 2048
|
26 |
|
27 |
+
# 確保 flux_pipe_call_that_returns_an_iterable_of_images 綁定到模型
|
28 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
29 |
|
30 |
+
# 定義推論函數
|
31 |
+
@gr.Interface.function(duration=75)
|
32 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024,
|
33 |
+
guidance_scale=3.5, num_inference_steps=28,
|
34 |
+
progress=gr.Progress(track_tqdm=True)):
|
35 |
if randomize_seed:
|
36 |
seed = random.randint(0, MAX_SEED)
|
37 |
generator = torch.Generator().manual_seed(seed)
|
38 |
+
|
39 |
+
# 逐步生成圖像
|
40 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
41 |
prompt=prompt,
|
42 |
guidance_scale=guidance_scale,
|
|
|
47 |
output_type="pil",
|
48 |
good_vae=good_vae,
|
49 |
):
|
50 |
+
yield img, seed
|
51 |
+
|
52 |
+
# 預設的範例
|
53 |
examples = [
|
54 |
"a tiny astronaut hatching from an egg on the moon",
|
55 |
"a cat holding a sign that says hello world",
|
56 |
"an anime illustration of a wiener schnitzel",
|
57 |
]
|
58 |
|
59 |
+
css = """
|
60 |
#col-container {
|
61 |
margin: 0 auto;
|
62 |
max-width: 520px;
|
63 |
}
|
64 |
"""
|
65 |
|
66 |
+
# 建立 Gradio 介面
|
67 |
with gr.Blocks(css=css) as demo:
|
|
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
gr.Markdown(f"""# FLUX.1 [dev]
|
70 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
71 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]
|
72 |
+
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)]
|
73 |
+
[[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
74 |
""")
|
75 |
|
76 |
with gr.Row():
|
|
|
77 |
prompt = gr.Text(
|
78 |
label="Prompt",
|
79 |
show_label=False,
|
|
|
81 |
placeholder="Enter your prompt",
|
82 |
container=False,
|
83 |
)
|
|
|
84 |
run_button = gr.Button("Run", scale=0)
|
85 |
+
|
86 |
result = gr.Image(label="Result", show_label=False)
|
87 |
+
|
88 |
with gr.Accordion("Advanced Settings", open=False):
|
89 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
91 |
|
92 |
with gr.Row():
|
93 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
94 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
95 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
with gr.Row():
|
97 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
|
98 |
+
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
|
99 |
|
100 |
+
gr.Examples(examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
gr.on(
|
103 |
triggers=[run_button.click, prompt.submit],
|
104 |
+
fn=infer,
|
105 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
106 |
+
outputs=[result, seed]
|
107 |
)
|
108 |
|
109 |
+
# 啟動 Gradio App
|
110 |
+
demo.launch(share=True)
|
111 |
+
|