Files changed (1) hide show
  1. app.py +44 -72
app.py CHANGED
@@ -1,31 +1,42 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- import spaces
5
  import torch
6
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
- from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
- from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
 
 
10
  dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
- good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
15
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
 
 
 
 
 
 
16
  torch.cuda.empty_cache()
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 2048
20
 
 
21
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
 
23
- @spaces.GPU(duration=75)
24
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
 
 
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
  generator = torch.Generator().manual_seed(seed)
28
-
 
29
  for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
30
  prompt=prompt,
31
  guidance_scale=guidance_scale,
@@ -36,31 +47,33 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
36
  output_type="pil",
37
  good_vae=good_vae,
38
  ):
39
- yield img, seed
40
-
 
41
  examples = [
42
  "a tiny astronaut hatching from an egg on the moon",
43
  "a cat holding a sign that says hello world",
44
  "an anime illustration of a wiener schnitzel",
45
  ]
46
 
47
- css="""
48
  #col-container {
49
  margin: 0 auto;
50
  max-width: 520px;
51
  }
52
  """
53
 
 
54
  with gr.Blocks(css=css) as demo:
55
-
56
  with gr.Column(elem_id="col-container"):
57
  gr.Markdown(f"""# FLUX.1 [dev]
58
  12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
 
 
60
  """)
61
 
62
  with gr.Row():
63
-
64
  prompt = gr.Text(
65
  label="Prompt",
66
  show_label=False,
@@ -68,72 +81,31 @@ with gr.Blocks(css=css) as demo:
68
  placeholder="Enter your prompt",
69
  container=False,
70
  )
71
-
72
  run_button = gr.Button("Run", scale=0)
73
-
74
  result = gr.Image(label="Result", show_label=False)
75
-
76
  with gr.Accordion("Advanced Settings", open=False):
77
-
78
- seed = gr.Slider(
79
- label="Seed",
80
- minimum=0,
81
- maximum=MAX_SEED,
82
- step=1,
83
- value=0,
84
- )
85
-
86
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
 
88
  with gr.Row():
89
-
90
- width = gr.Slider(
91
- label="Width",
92
- minimum=256,
93
- maximum=MAX_IMAGE_SIZE,
94
- step=32,
95
- value=1024,
96
- )
97
-
98
- height = gr.Slider(
99
- label="Height",
100
- minimum=256,
101
- maximum=MAX_IMAGE_SIZE,
102
- step=32,
103
- value=1024,
104
- )
105
-
106
  with gr.Row():
 
 
107
 
108
- guidance_scale = gr.Slider(
109
- label="Guidance Scale",
110
- minimum=1,
111
- maximum=15,
112
- step=0.1,
113
- value=3.5,
114
- )
115
-
116
- num_inference_steps = gr.Slider(
117
- label="Number of inference steps",
118
- minimum=1,
119
- maximum=50,
120
- step=1,
121
- value=28,
122
- )
123
-
124
- gr.Examples(
125
- examples = examples,
126
- fn = infer,
127
- inputs = [prompt],
128
- outputs = [result, seed],
129
- cache_examples="lazy"
130
- )
131
 
132
  gr.on(
133
  triggers=[run_button.click, prompt.submit],
134
- fn = infer,
135
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
- outputs = [result, seed]
137
  )
138
 
139
- demo.launch()
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  import torch
5
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
6
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
7
+ from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
8
 
9
+ # 檢查設備是否可用 GPU
10
  dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
+ # 載入模型,若需要 API Token,請加上 use_auth_token=True
14
+ try:
15
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
16
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae",
17
+ torch_dtype=dtype).to(device)
18
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
19
+ except Exception as e:
20
+ print(f"模型載入錯誤: {e}")
21
+
22
  torch.cuda.empty_cache()
23
 
24
  MAX_SEED = np.iinfo(np.int32).max
25
  MAX_IMAGE_SIZE = 2048
26
 
27
+ # 確保 flux_pipe_call_that_returns_an_iterable_of_images 綁定到模型
28
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
29
 
30
+ # 定義推論函數
31
+ @gr.Interface.function(duration=75)
32
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024,
33
+ guidance_scale=3.5, num_inference_steps=28,
34
+ progress=gr.Progress(track_tqdm=True)):
35
  if randomize_seed:
36
  seed = random.randint(0, MAX_SEED)
37
  generator = torch.Generator().manual_seed(seed)
38
+
39
+ # 逐步生成圖像
40
  for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
41
  prompt=prompt,
42
  guidance_scale=guidance_scale,
 
47
  output_type="pil",
48
  good_vae=good_vae,
49
  ):
50
+ yield img, seed
51
+
52
+ # 預設的範例
53
  examples = [
54
  "a tiny astronaut hatching from an egg on the moon",
55
  "a cat holding a sign that says hello world",
56
  "an anime illustration of a wiener schnitzel",
57
  ]
58
 
59
+ css = """
60
  #col-container {
61
  margin: 0 auto;
62
  max-width: 520px;
63
  }
64
  """
65
 
66
+ # 建立 Gradio 介面
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
  gr.Markdown(f"""# FLUX.1 [dev]
70
  12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
71
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]
72
+ [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)]
73
+ [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
74
  """)
75
 
76
  with gr.Row():
 
77
  prompt = gr.Text(
78
  label="Prompt",
79
  show_label=False,
 
81
  placeholder="Enter your prompt",
82
  container=False,
83
  )
 
84
  run_button = gr.Button("Run", scale=0)
85
+
86
  result = gr.Image(label="Result", show_label=False)
87
+
88
  with gr.Accordion("Advanced Settings", open=False):
89
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
 
 
 
 
 
 
 
 
90
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
91
 
92
  with gr.Row():
93
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
94
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
95
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  with gr.Row():
97
+ guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
98
+ num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
99
 
100
+ gr.Examples(examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  gr.on(
103
  triggers=[run_button.click, prompt.submit],
104
+ fn=infer,
105
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
106
+ outputs=[result, seed]
107
  )
108
 
109
+ # 啟動 Gradio App
110
+ demo.launch(share=True)
111
+