Spaces:
Running
on
Zero
Running
on
Zero
# catvton-flux | |
An advanced virtual try-on solution that combines the power of [CATVTON](https://arxiv.org/abs/2407.15886) (Contrastive Appearance and Topology Virtual Try-On) with Flux fill inpainting model for realistic and accurate clothing transfer. | |
Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering. | |
## Showcase | |
| Original | Garment | Result | | |
|----------|---------|---------| | |
| ![Original](example/person/1.jpg) | ![Garment](example/garment/00035_00.jpg) | ![Result](example/result/1.png) | | |
| ![Original](example/person/1.jpg) | ![Garment](example/garment/04564_00.jpg) | ![Result](example/result/2.png) | | |
| ![Original](example/person/00008_00.jpg) | ![Garment](example/garment/00034_00.jpg) | ![Result](example/result/3.png) | | |
## Model Weights | |
Hugging Face: 🤗 [catvton-flux-alpha](https://huggingface.co/xiaozaa/catvton-flux-alpha) | |
The model weights are trained on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset. | |
## Prerequisites | |
```bash | |
bash | |
conda create -n flux python=3.10 | |
conda activate flux | |
pip install -r requirements.txt | |
``` | |
## Usage | |
Run the following command to try on an image: | |
```bash | |
python tryon_inference.py \ | |
--image ./example/person/00008_00.jpg \ | |
--mask ./example/person/00008_00_mask.png \ | |
--garment ./example/garment/00034_00.jpg \ | |
--seed 42 | |
``` | |
Run the following command to start a gradio demo: | |
```bash | |
python app.py | |
``` | |
## TODO: | |
- [ ] Release the FID score | |
- [x] Add gradio demo | |
- [ ] Release updated weights with better performance | |
## Citation | |
```bibtex | |
@misc{chong2024catvtonconcatenationneedvirtual, | |
title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models}, | |
author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang}, | |
year={2024}, | |
eprint={2407.15886}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV}, | |
url={https://arxiv.org/abs/2407.15886}, | |
} | |
@article{lhhuang2024iclora, | |
title={In-Context LoRA for Diffusion Transformers}, | |
author={Huang, Lianghua and Wang, Wei and Wu, Zhi-Fan and Shi, Yupeng and Dou, Huanzhang and Liang, Chen and Feng, Yutong and Liu, Yu and Zhou, Jingren}, | |
journal={arXiv preprint arxiv:2410.23775}, | |
year={2024} | |
} | |
``` | |
## License | |
- The code is licensed under the MIT License. | |
- The model weights have the same license as Flux.1 Fill and VITON-HD. |