Spaces:
Running
on
Zero
Running
on
Zero
add spaces
Browse files- README.md +1 -1
- app.py +158 -96
- example/garment/00396_00.jpg +0 -0
- requirements.txt +1 -14
README.md
CHANGED
@@ -8,7 +8,7 @@ Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt
|
|
8 |
---
|
9 |
**Latest Achievement**
|
10 |
(2024/11/25):
|
11 |
-
- Released lora weights.
|
12 |
|
13 |
(2024/11/24):
|
14 |
- Released FID score and gradio demo
|
|
|
8 |
---
|
9 |
**Latest Achievement**
|
10 |
(2024/11/25):
|
11 |
+
- Released lora weights. FID: 6.0675811767578125 on VITON-HD dataset. Test configuration: scale 30, step 30.
|
12 |
|
13 |
(2024/11/24):
|
14 |
- Released FID score and gradio demo
|
app.py
CHANGED
@@ -1,17 +1,63 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from tryon_inference import run_inference
|
3 |
import os
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def gradio_inference(
|
9 |
image_data,
|
10 |
garment,
|
11 |
num_steps=50,
|
12 |
guidance_scale=30.0,
|
13 |
seed=-1,
|
14 |
-
|
|
|
15 |
):
|
16 |
"""Wrapper function for Gradio interface"""
|
17 |
# Use temporary directory
|
@@ -38,116 +84,132 @@ def gradio_inference(
|
|
38 |
try:
|
39 |
# Run inference
|
40 |
_, tryon_result = run_inference(
|
|
|
41 |
image_path=temp_image,
|
42 |
mask_path=temp_mask,
|
43 |
garment_path=temp_garment,
|
44 |
num_steps=num_steps,
|
45 |
guidance_scale=guidance_scale,
|
46 |
seed=seed,
|
47 |
-
size=
|
48 |
)
|
49 |
return tryon_result
|
50 |
except Exception as e:
|
51 |
raise gr.Error(f"Error during inference: {str(e)}")
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
examples=[
|
73 |
-
["./example/person/00008_00.jpg"],
|
74 |
-
["./example/person/00055_00.jpg"],
|
75 |
-
["./example/person/00057_00.jpg"],
|
76 |
-
["./example/person/00067_00.jpg"],
|
77 |
-
["./example/person/00069_00.jpg"],
|
78 |
-
],
|
79 |
-
inputs=[image_input],
|
80 |
-
label="Person Images",
|
81 |
-
)
|
82 |
-
with gr.Column():
|
83 |
-
garment_input = gr.Image(label="Garment Image", type="pil", height=600)
|
84 |
-
gr.Examples(
|
85 |
-
examples=[
|
86 |
-
["./example/garment/04564_00.jpg"],
|
87 |
-
["./example/garment/00055_00.jpg"],
|
88 |
-
["./example/garment/00057_00.jpg"],
|
89 |
-
["./example/garment/00067_00.jpg"],
|
90 |
-
["./example/garment/00069_00.jpg"],
|
91 |
-
],
|
92 |
-
inputs=[garment_input],
|
93 |
-
label="Garment Images",
|
94 |
-
)
|
95 |
-
|
96 |
-
with gr.Row():
|
97 |
-
num_steps = gr.Slider(
|
98 |
-
minimum=1,
|
99 |
-
maximum=100,
|
100 |
-
value=50,
|
101 |
-
step=1,
|
102 |
-
label="Number of Steps"
|
103 |
-
)
|
104 |
-
guidance_scale = gr.Slider(
|
105 |
-
minimum=1.0,
|
106 |
-
maximum=50.0,
|
107 |
-
value=30.0,
|
108 |
-
step=0.5,
|
109 |
-
label="Guidance Scale"
|
110 |
)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
117 |
)
|
118 |
-
|
119 |
-
submit_btn = gr.Button("Generate Try-On", variant="primary")
|
120 |
-
|
121 |
with gr.Column():
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
with gr.Row():
|
125 |
-
gr.
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
)
|
144 |
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
demo = create_demo()
|
149 |
-
demo.queue() # Enable queuing for multiple users
|
150 |
-
demo.launch(
|
151 |
-
share=True,
|
152 |
-
server_name="0.0.0.0" # Makes the server accessible from other machines
|
153 |
-
)
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from tryon_inference import run_inference
|
5 |
import os
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import tempfile
|
9 |
+
import torch
|
10 |
+
from diffusers import FluxTransformer2DModel, FluxFillPipeline
|
11 |
+
|
12 |
+
import shutil
|
13 |
+
|
14 |
+
def find_cuda():
|
15 |
+
# Check if CUDA_HOME or CUDA_PATH environment variables are set
|
16 |
+
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
17 |
+
|
18 |
+
if cuda_home and os.path.exists(cuda_home):
|
19 |
+
return cuda_home
|
20 |
+
|
21 |
+
# Search for the nvcc executable in the system's PATH
|
22 |
+
nvcc_path = shutil.which('nvcc')
|
23 |
+
|
24 |
+
if nvcc_path:
|
25 |
+
# Remove the 'bin/nvcc' part to get the CUDA installation path
|
26 |
+
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
|
27 |
+
return cuda_path
|
28 |
+
|
29 |
+
return None
|
30 |
+
|
31 |
+
cuda_path = find_cuda()
|
32 |
+
|
33 |
+
if cuda_path:
|
34 |
+
print(f"CUDA installation found at: {cuda_path}")
|
35 |
+
else:
|
36 |
+
print("CUDA installation not found")
|
37 |
|
38 |
+
device = torch.device('cuda')
|
39 |
+
|
40 |
+
print('Loading diffusion model ...')
|
41 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
42 |
+
"xiaozaa/catvton-flux-alpha",
|
43 |
+
torch_dtype=torch.bfloat16
|
44 |
+
)
|
45 |
+
pipe = FluxFillPipeline.from_pretrained(
|
46 |
+
"black-forest-labs/FLUX.1-dev",
|
47 |
+
transformer=transformer,
|
48 |
+
torch_dtype=torch.bfloat16
|
49 |
+
).to(device)
|
50 |
+
print('Loading Finished!')
|
51 |
+
|
52 |
+
@spaces.GPU
|
53 |
def gradio_inference(
|
54 |
image_data,
|
55 |
garment,
|
56 |
num_steps=50,
|
57 |
guidance_scale=30.0,
|
58 |
seed=-1,
|
59 |
+
width=768,
|
60 |
+
height=1024
|
61 |
):
|
62 |
"""Wrapper function for Gradio interface"""
|
63 |
# Use temporary directory
|
|
|
84 |
try:
|
85 |
# Run inference
|
86 |
_, tryon_result = run_inference(
|
87 |
+
pipe=pipe,
|
88 |
image_path=temp_image,
|
89 |
mask_path=temp_mask,
|
90 |
garment_path=temp_garment,
|
91 |
num_steps=num_steps,
|
92 |
guidance_scale=guidance_scale,
|
93 |
seed=seed,
|
94 |
+
size=(width, height)
|
95 |
)
|
96 |
return tryon_result
|
97 |
except Exception as e:
|
98 |
raise gr.Error(f"Error during inference: {str(e)}")
|
99 |
|
100 |
+
with gr.Blocks() as demo:
|
101 |
+
gr.Markdown("""
|
102 |
+
# CATVTON FLUX Virtual Try-On Demo
|
103 |
+
Upload a model image, draw a mask, and a garment image to generate virtual try-on results.
|
104 |
+
|
105 |
+
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha)
|
106 |
+
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux)
|
107 |
+
""")
|
108 |
+
|
109 |
+
gr.Video("example/github.mp4", label="Demo Video: How to use the tool")
|
110 |
+
|
111 |
+
with gr.Column():
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
image_input = gr.ImageMask(
|
115 |
+
label="Model Image (Click 'Edit' and draw mask over the clothing area)",
|
116 |
+
type="pil",
|
117 |
+
height=600,
|
118 |
+
width=300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
)
|
120 |
+
gr.Examples(
|
121 |
+
examples=[
|
122 |
+
["./example/person/00008_00.jpg"],
|
123 |
+
["./example/person/00055_00.jpg"],
|
124 |
+
["./example/person/00057_00.jpg"],
|
125 |
+
["./example/person/00067_00.jpg"],
|
126 |
+
["./example/person/00069_00.jpg"],
|
127 |
+
],
|
128 |
+
inputs=[image_input],
|
129 |
+
label="Person Images",
|
130 |
)
|
|
|
|
|
|
|
131 |
with gr.Column():
|
132 |
+
garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300)
|
133 |
+
gr.Examples(
|
134 |
+
examples=[
|
135 |
+
["./example/garment/04564_00.jpg"],
|
136 |
+
["./example/garment/00055_00.jpg"],
|
137 |
+
["./example/garment/00396_00.jpg"],
|
138 |
+
["./example/garment/00067_00.jpg"],
|
139 |
+
["./example/garment/00069_00.jpg"],
|
140 |
+
],
|
141 |
+
inputs=[garment_input],
|
142 |
+
label="Garment Images",
|
143 |
+
)
|
144 |
+
with gr.Column():
|
145 |
+
tryon_output = gr.Image(label="Try-On Result", height=600, width=300)
|
146 |
+
|
147 |
with gr.Row():
|
148 |
+
num_steps = gr.Slider(
|
149 |
+
minimum=1,
|
150 |
+
maximum=100,
|
151 |
+
value=30,
|
152 |
+
step=1,
|
153 |
+
label="Number of Steps"
|
154 |
+
)
|
155 |
+
guidance_scale = gr.Slider(
|
156 |
+
minimum=1.0,
|
157 |
+
maximum=50.0,
|
158 |
+
value=30.0,
|
159 |
+
step=0.5,
|
160 |
+
label="Guidance Scale"
|
161 |
+
)
|
162 |
+
seed = gr.Slider(
|
163 |
+
minimum=-1,
|
164 |
+
maximum=2147483647,
|
165 |
+
step=1,
|
166 |
+
value=-1,
|
167 |
+
label="Seed (-1 for random)"
|
168 |
+
)
|
169 |
+
width = gr.Slider(
|
170 |
+
minimum=256,
|
171 |
+
maximum=1024,
|
172 |
+
step=64,
|
173 |
+
value=768,
|
174 |
+
label="Width"
|
175 |
+
)
|
176 |
+
height = gr.Slider(
|
177 |
+
minimum=256,
|
178 |
+
maximum=1024,
|
179 |
+
step=64,
|
180 |
+
value=1024,
|
181 |
+
label="Height"
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
submit_btn = gr.Button("Generate Try-On", variant="primary")
|
186 |
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
gr.Markdown("""
|
190 |
+
### Notes:
|
191 |
+
- The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation.
|
192 |
+
- The mask should indicate the region where the garment will be placed.
|
193 |
+
- The garment image should be on a clean background.
|
194 |
+
- The model is not perfect. It may generate some artifacts.
|
195 |
+
- The model is slow. Please be patient.
|
196 |
+
- The model is just for research purpose.
|
197 |
+
""")
|
|
|
198 |
|
199 |
+
submit_btn.click(
|
200 |
+
fn=gradio_inference,
|
201 |
+
inputs=[
|
202 |
+
image_input,
|
203 |
+
garment_input,
|
204 |
+
num_steps,
|
205 |
+
guidance_scale,
|
206 |
+
seed,
|
207 |
+
width,
|
208 |
+
height
|
209 |
+
],
|
210 |
+
outputs=[tryon_output],
|
211 |
+
api_name="try-on"
|
212 |
+
)
|
213 |
+
|
214 |
|
215 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
example/garment/00396_00.jpg
ADDED
requirements.txt
CHANGED
@@ -37,19 +37,6 @@ multiprocess==0.70.16
|
|
37 |
networkx==3.3
|
38 |
ninja==1.11.1.1
|
39 |
numpy==1.26.4
|
40 |
-
nvidia-cublas-cu12==12.1.3.1
|
41 |
-
nvidia-cuda-cupti-cu12==12.1.105
|
42 |
-
nvidia-cuda-nvrtc-cu12==12.1.105
|
43 |
-
nvidia-cuda-runtime-cu12==12.1.105
|
44 |
-
nvidia-cudnn-cu12==9.1.0.70
|
45 |
-
nvidia-cufft-cu12==11.0.2.54
|
46 |
-
nvidia-curand-cu12==10.3.2.106
|
47 |
-
nvidia-cusolver-cu12==11.4.5.107
|
48 |
-
nvidia-cusparse-cu12==12.1.0.106
|
49 |
-
nvidia-ml-py==12.555.43
|
50 |
-
nvidia-nccl-cu12==2.20.5
|
51 |
-
nvidia-nvjitlink-cu12==12.6.20
|
52 |
-
nvidia-nvtx-cu12==12.1.105
|
53 |
omegaconf==2.3.0
|
54 |
onnxruntime-gpu==1.18.1
|
55 |
opencv-python==4.10.0.84
|
@@ -59,7 +46,6 @@ pandas==2.2.2
|
|
59 |
pillow==10.4.0
|
60 |
platformdirs==4.2.2
|
61 |
protobuf==5.27.3
|
62 |
-
psutil==6.0.0
|
63 |
py-cpuinfo==9.0.0
|
64 |
pyarrow==17.0.0
|
65 |
pydantic==2.8.2
|
@@ -97,4 +83,5 @@ gradio==5.6.0
|
|
97 |
gradio_client==1.4.3
|
98 |
prodigyopt
|
99 |
huggingface-hub
|
|
|
100 |
git+https://github.com/huggingface/diffusers.git
|
|
|
37 |
networkx==3.3
|
38 |
ninja==1.11.1.1
|
39 |
numpy==1.26.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
omegaconf==2.3.0
|
41 |
onnxruntime-gpu==1.18.1
|
42 |
opencv-python==4.10.0.84
|
|
|
46 |
pillow==10.4.0
|
47 |
platformdirs==4.2.2
|
48 |
protobuf==5.27.3
|
|
|
49 |
py-cpuinfo==9.0.0
|
50 |
pyarrow==17.0.0
|
51 |
pydantic==2.8.2
|
|
|
83 |
gradio_client==1.4.3
|
84 |
prodigyopt
|
85 |
huggingface-hub
|
86 |
+
spaces
|
87 |
git+https://github.com/huggingface/diffusers.git
|