Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,331 Bytes
e2160a6 bff1c38 e2160a6 56dd0de 38c7953 e525714 d1bb2c2 56dd0de 711fa9a 527b2cf bff1c38 e525714 711fa9a 55fa117 0492353 e525714 7565e99 342f262 e2160a6 596e4a5 4264907 342f262 e525714 527b2cf 420808c 527b2cf d174eab 6e51693 342f262 e2160a6 e525714 342f262 e525714 342f262 e525714 342f262 e525714 342f262 ac3813d 342f262 e525714 342f262 e525714 342f262 e525714 342f262 e525714 342f262 e525714 93033c9 527b2cf 93033c9 e525714 d174eab e525714 342f262 e525714 342f262 e525714 8d1f3e8 e525714 342f262 e525714 527b2cf 342f262 e2160a6 e525714 342f262 e525714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import gradio as gr
import torch
import numpy as np
import diffusers
import os
import random
import spaces
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
device = "cuda" #if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForText2Image.from_pretrained("briaai/BRIA-2.3", torch_dtype=torch.float16, force_zeros_for_empty_prompt=False).to(device)
pipe.load_ip_adapter("briaai/Image-Prompt", subfolder='models', weight_name="ip_adapter_bria.bin")
pipe.to(device)
# default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU(enable_queue=True)
def predict(prompt, upload_images, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, center_crop=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
ip_adapter_images = []
for img in upload_images:
ip_adapter_images.append(load_image(img))
# ip_adapter_images = [Image.open(image) for image in ip_adapter_images]
# # Optionally resize images if center crop is not selected
# if not center_crop:
# ip_adapter_images = [image.resize((224, 224)) for image in ip_adapter_images]
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe.set_ip_adapter_scale([ip_adapter_scale])
image = pipe(
prompt=prompt,
ip_adapter_image=[ip_adapter_image],
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return image, seed
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
examples = [
["high quality", "example1.png", 1.0, "", 1000, False, False, 1152, 896],
["capybara", "example2.png", 0.7, "", 1000, False, False, 1152, 896],
]
css="""
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#result img{
object-position: top;
}
#result .image-container{
height: 100%
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Bria's Image-Prompt-Adapter
""")
with gr.Row():
with gr.Column():
# ip_adapter_images = gr.Gallery(label="Input Images", elem_id="image-gallery").style(grid=[2], preview=True)
# ip_adapter_images = gr.Gallery(label="Input Images", elem_id="image-gallery", show_label=True)#.style(grid=[2])
ip_adapter_images = gr.Gallery(columns=4, interactive=True, label="Input Images")
files = gr.File(
label="Input Image/s",
file_types=["image"],
file_count="multiple"
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
ip_adapter_scale = gr.Slider(
label="Image Input Scale",
info="Use 1 for creating image variations",
minimum=0.0,
maximum=1.0,
step=0.05,
value=1.0,
)
with gr.Column():
result = gr.Image(label="Result", elem_id="result", format="png")
prompt = gr.Text(
label="Prompt",
show_label=True,
lines=1,
placeholder="Enter your prompt",
container=True,
info='For image variation, leave empty or try a prompt like: "high quality".'
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=32,
value=1024,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1000,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
center_crop = gr.Checkbox(label="Center Crop image", value=False, info="If not checked, the IP-Adapter image input would be resized to a square.")
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=2048,
# step=32,
# value=1024,
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=2048,
# step=32,
# value=1024,
# )
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=25,
)
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, files])
# remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
# gr.Examples(
# examples=examples,
# fn=predict,
# inputs=[prompt, ip_adapter_images, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height],
# outputs=[result, seed],
# cache_examples="lazy"
# )
gr.on(
triggers=[run_button.click, prompt.submit],
fn=predict,
inputs=[prompt, files, ip_adapter_scale, negative_prompt, seed, randomize_seed, center_crop, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.queue(max_size=25,api_open=False).launch(show_api=False)
# image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |