brxerq's picture
Update app.py
7bd873d verified
raw
history blame
1.36 kB
# -*- coding: utf-8 -*-
import gradio as gr
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import cv2
# Define a dictionary to map the custom layer to its implementation
custom_objects = {'KerasLayer': hub.KerasLayer}
# Load your model (ensure the path to the model file is correct)
model = tf.keras.models.load_model('bird_model4.h5', custom_objects=custom_objects)
# Load the class labels from the text file
train_info = []
with open('labelwithspace.txt', 'r') as file:
train_info = [line.strip() for line in file.readlines()]
# Function to preprocess the image and make predictions
def predict_image(image):
# Resize the image to the model's input size
img = cv2.resize(image, (224, 224))
img = img / 255.0 # Normalize the image
# Make predictions using the model
predictions = model.predict(img[np.newaxis, ...])[0]
top_classes = np.argsort(predictions)[-3:][::-1] # Get indices of top 3 predictions
top_class = top_classes[0] # Index of the top prediction
label = train_info[top_class] # Retrieve the label using the index
return label
# Define the Gradio interface
input_image = gr.inputs.Image(shape=(224, 224))
output_label = gr.outputs.Label()
# Launch the Gradio app
gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch()