File size: 7,041 Bytes
b713355
 
 
 
 
 
 
 
 
 
 
 
 
 
4efaea0
 
 
 
 
 
 
 
b713355
4efaea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b713355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efaea0
b713355
4efaea0
b713355
 
 
 
 
 
4efaea0
b713355
4efaea0
b713355
 
 
 
 
 
4efaea0
b713355
4efaea0
b713355
 
 
 
 
 
 
4efaea0
b713355
 
 
 
 
 
 
 
 
 
 
4efaea0
 
b713355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efaea0
 
 
 
 
 
 
 
b713355
86cae26
b713355
4efaea0
b713355
4efaea0
c318dc9
 
 
 
4efaea0
b713355
4efaea0
 
 
b713355
b47bc60
01212d7
b47bc60
 
4efaea0
 
b713355
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse

import cv2
import numpy as np
import torch

import kornia as K
from kornia.contrib import FaceDetector, FaceDetectorResult

import gradio as gr

import face_detection


def compare_detect_faces(img: np.ndarray, 
                         confidence_threshold, 
                         nms_threshold,
                         kornia_toggle,
                         retina_toggle,
                         retina_mobile_toggle,
                         dsfd_toggle
                         ):
    
    detections = []
    
    if kornia_toggle=="On":
        kornia_detections = kornia_detect(img, 
                                          confidence_threshold=confidence_threshold, 
                                          nms_threshold=nms_threshold)
    else:
        kornia_detections = None
        
    if retina_toggle=="On":
        retina_detections = retina_detect(img, 
                                          confidence_threshold=confidence_threshold, 
                                          nms_threshold=nms_threshold)
        detections.append(retina_detections)
    else:
        retina_detections = None
    
    if retina_mobile_toggle=="On":
        retina_mobile_detections = retina_mobilenet_detect(img, 
                                          confidence_threshold=confidence_threshold, 
                                          nms_threshold=nms_threshold)
        detections.append(retina_mobile_detections)
    else:
        retina_mobile_detections = None

    if dsfd_toggle=="On":
        dsfd_detections = dsfd_detect(img, 
                                          confidence_threshold=confidence_threshold, 
                                          nms_threshold=nms_threshold)
        detections.append(dsfd_detections)
    else:
        dsfd_detections = None

    
    return kornia_detections, retina_detections, retina_mobile_detections, dsfd_detections

def scale_image(img: np.ndarray, size: int) -> np.ndarray:
    h, w = img.shape[:2]
    scale = 1.0 * size / w
    return cv2.resize(img, (int(w * scale), int(h * scale)))


def base_detect(detector, img):
    img = scale_image(img, 400)

    detections = detector.detect(img)
    img_vis = img.copy()

    for box in detections:
        img_vis = cv2.rectangle(img_vis, 
                                box[:2].astype(int).tolist(), 
                                box[2:4].astype(int).tolist(), 
                                (0, 255, 0), 1)
    
    return img_vis


def retina_detect(img, confidence_threshold, nms_threshold):
    detector = face_detection.build_detector(
    "RetinaNetResNet50", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
    
    img_vis = base_detect(detector, img)
    
    return img_vis


def retina_mobilenet_detect(img, confidence_threshold, nms_threshold):
    detector = face_detection.build_detector(
    "RetinaNetMobileNetV1", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
    
    img_vis = base_detect(detector, img)
    
    return img_vis


def dsfd_detect(img, confidence_threshold, nms_threshold):
    detector = face_detection.build_detector(
    "DSFDDetector", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
    
    img_vis = base_detect(detector, img)
    
    return img_vis
    


def kornia_detect(img, confidence_threshold, nms_threshold):
    # select the device
    device = torch.device('cpu')

    # load the image and scale
    img_raw = scale_image(img, 400)

    # preprocess
    img = K.image_to_tensor(img_raw, keepdim=False).to(device)
    img = K.color.bgr_to_rgb(img.float())

    # create the detector and find the faces !
    face_detection = FaceDetector(confidence_threshold=confidence_threshold, 
                                  nms_threshold=nms_threshold).to(device)

    with torch.no_grad():
        dets = face_detection(img)
    dets = [FaceDetectorResult(o) for o in dets]

    # show image

    img_vis = img_raw.copy()

    for b in dets:

        # draw face bounding box
        img_vis = cv2.rectangle(img_vis, 
                                b.top_left.int().tolist(), 
                                b.bottom_right.int().tolist(), 
                                (0, 255, 0), 
                                1)
    
    return img_vis
    
input_image = gr.components.Image()
image_kornia = gr.components.Image(label="Kornia YuNet")
image_retina = gr.components.Image(label="RetinaFace")
image_retina_mobile = gr.components.Image(label="Retina Mobilenet")
image_dsfd = gr.components.Image(label="DSFD")

confidence_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.5, step=0.05, label="Confidence Threshold")
nms_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.3, step=0.05, label="Non Maximum Supression (NMS) Threshold")
    
    
kornia_radio = gr.Radio(["On", "Off"], value="On", label="Kornia YuNet")
retinanet_radio = gr.Radio(["On", "Off"], value="On", label="RetinaFace")
retina_mobile_radio = gr.Radio(["On", "Off"], value="On", label="Retina Mobilenets")
dsfd_radio = gr.Radio(["On", "Off"], value="On", label="DSFD")

#methods_dropdown = gr.components.Dropdown(["Kornia YuNet", "RetinaFace", "RetinaMobile", "DSFD"], value="Kornia YuNet", label="Choose a method")

description = """This space let's you compare different face detection algorithms, based on Convolutional Neural Networks (CNNs).

The models used here are:
* Kornia YuNet: High Speed. Using the [Kornia Face Detection](https://kornia.readthedocs.io/en/latest/applications/face_detection.html) implementation
* RetinaFace: High Accuracy. Using the [RetinaFace](https://arxiv.org/pdf/1905.00641.pdf) implementation with ResNet50 backbone from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference)
* RetinaMobileNet: Mid Speed, Mid Accuracy. RetinaFace with a MobileNetV1 backbone, also from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference)
* DSFD: High Accuracy. [Dual Shot Face Detector](http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_DSFD_Dual_Shot_Face_Detector_CVPR_2019_paper.pdf) from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference) as well.
"""

compare_iface = gr.Interface(
    fn=compare_detect_faces,
    inputs=[input_image, confidence_slider, nms_slider, kornia_radio, retinanet_radio, retina_mobile_radio, dsfd_radio],#, size_slider, neighbour_slider, scale_slider],
    outputs=[image_kornia, image_retina, image_retina_mobile, image_dsfd],
    examples=[["data/50_Celebration_Or_Party_birthdayparty_50_25.jpg", 0.5, 0.3, "On", "On", "On", "On"], 
              ["data/12_Group_Group_12_Group_Group_12_39.jpg", 0.5, 0.3, "On", "On", "On", "On"], 
              ["data/31_Waiter_Waitress_Waiter_Waitress_31_55.jpg", 0.5, 0.3, "On", "On", "On", "On"],
              ["data/12_Group_Group_12_Group_Group_12_283.jpg", 0.5, 0.3, "On", "On", "On", "On"]],
    title="Face Detections",
    description=description
).launch()