Spaces:
Runtime error
Runtime error
File size: 7,041 Bytes
b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 4efaea0 b713355 86cae26 b713355 4efaea0 b713355 4efaea0 c318dc9 4efaea0 b713355 4efaea0 b713355 b47bc60 01212d7 b47bc60 4efaea0 b713355 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import argparse
import cv2
import numpy as np
import torch
import kornia as K
from kornia.contrib import FaceDetector, FaceDetectorResult
import gradio as gr
import face_detection
def compare_detect_faces(img: np.ndarray,
confidence_threshold,
nms_threshold,
kornia_toggle,
retina_toggle,
retina_mobile_toggle,
dsfd_toggle
):
detections = []
if kornia_toggle=="On":
kornia_detections = kornia_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
else:
kornia_detections = None
if retina_toggle=="On":
retina_detections = retina_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
detections.append(retina_detections)
else:
retina_detections = None
if retina_mobile_toggle=="On":
retina_mobile_detections = retina_mobilenet_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
detections.append(retina_mobile_detections)
else:
retina_mobile_detections = None
if dsfd_toggle=="On":
dsfd_detections = dsfd_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
detections.append(dsfd_detections)
else:
dsfd_detections = None
return kornia_detections, retina_detections, retina_mobile_detections, dsfd_detections
def scale_image(img: np.ndarray, size: int) -> np.ndarray:
h, w = img.shape[:2]
scale = 1.0 * size / w
return cv2.resize(img, (int(w * scale), int(h * scale)))
def base_detect(detector, img):
img = scale_image(img, 400)
detections = detector.detect(img)
img_vis = img.copy()
for box in detections:
img_vis = cv2.rectangle(img_vis,
box[:2].astype(int).tolist(),
box[2:4].astype(int).tolist(),
(0, 255, 0), 1)
return img_vis
def retina_detect(img, confidence_threshold, nms_threshold):
detector = face_detection.build_detector(
"RetinaNetResNet50", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
img_vis = base_detect(detector, img)
return img_vis
def retina_mobilenet_detect(img, confidence_threshold, nms_threshold):
detector = face_detection.build_detector(
"RetinaNetMobileNetV1", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
img_vis = base_detect(detector, img)
return img_vis
def dsfd_detect(img, confidence_threshold, nms_threshold):
detector = face_detection.build_detector(
"DSFDDetector", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
img_vis = base_detect(detector, img)
return img_vis
def kornia_detect(img, confidence_threshold, nms_threshold):
# select the device
device = torch.device('cpu')
# load the image and scale
img_raw = scale_image(img, 400)
# preprocess
img = K.image_to_tensor(img_raw, keepdim=False).to(device)
img = K.color.bgr_to_rgb(img.float())
# create the detector and find the faces !
face_detection = FaceDetector(confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold).to(device)
with torch.no_grad():
dets = face_detection(img)
dets = [FaceDetectorResult(o) for o in dets]
# show image
img_vis = img_raw.copy()
for b in dets:
# draw face bounding box
img_vis = cv2.rectangle(img_vis,
b.top_left.int().tolist(),
b.bottom_right.int().tolist(),
(0, 255, 0),
1)
return img_vis
input_image = gr.components.Image()
image_kornia = gr.components.Image(label="Kornia YuNet")
image_retina = gr.components.Image(label="RetinaFace")
image_retina_mobile = gr.components.Image(label="Retina Mobilenet")
image_dsfd = gr.components.Image(label="DSFD")
confidence_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.5, step=0.05, label="Confidence Threshold")
nms_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.3, step=0.05, label="Non Maximum Supression (NMS) Threshold")
kornia_radio = gr.Radio(["On", "Off"], value="On", label="Kornia YuNet")
retinanet_radio = gr.Radio(["On", "Off"], value="On", label="RetinaFace")
retina_mobile_radio = gr.Radio(["On", "Off"], value="On", label="Retina Mobilenets")
dsfd_radio = gr.Radio(["On", "Off"], value="On", label="DSFD")
#methods_dropdown = gr.components.Dropdown(["Kornia YuNet", "RetinaFace", "RetinaMobile", "DSFD"], value="Kornia YuNet", label="Choose a method")
description = """This space let's you compare different face detection algorithms, based on Convolutional Neural Networks (CNNs).
The models used here are:
* Kornia YuNet: High Speed. Using the [Kornia Face Detection](https://kornia.readthedocs.io/en/latest/applications/face_detection.html) implementation
* RetinaFace: High Accuracy. Using the [RetinaFace](https://arxiv.org/pdf/1905.00641.pdf) implementation with ResNet50 backbone from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference)
* RetinaMobileNet: Mid Speed, Mid Accuracy. RetinaFace with a MobileNetV1 backbone, also from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference)
* DSFD: High Accuracy. [Dual Shot Face Detector](http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_DSFD_Dual_Shot_Face_Detector_CVPR_2019_paper.pdf) from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference) as well.
"""
compare_iface = gr.Interface(
fn=compare_detect_faces,
inputs=[input_image, confidence_slider, nms_slider, kornia_radio, retinanet_radio, retina_mobile_radio, dsfd_radio],#, size_slider, neighbour_slider, scale_slider],
outputs=[image_kornia, image_retina, image_retina_mobile, image_dsfd],
examples=[["data/50_Celebration_Or_Party_birthdayparty_50_25.jpg", 0.5, 0.3, "On", "On", "On", "On"],
["data/12_Group_Group_12_Group_Group_12_39.jpg", 0.5, 0.3, "On", "On", "On", "On"],
["data/31_Waiter_Waitress_Waiter_Waitress_31_55.jpg", 0.5, 0.3, "On", "On", "On", "On"],
["data/12_Group_Group_12_Group_Group_12_283.jpg", 0.5, 0.3, "On", "On", "On", "On"]],
title="Face Detections",
description=description
).launch() |