|
import gradio as gr |
|
import hashlib |
|
import tempfile |
|
import requests |
|
import pandas as pd |
|
from TTS.utils.manage import ModelManager |
|
from TTS.utils.synthesizer import Synthesizer |
|
def fx(x:str): |
|
hash=hashlib.md5() |
|
hash.update(x.encode(encoding='utf-8')) |
|
return hash.hexdigest() |
|
|
|
manager = ModelManager() |
|
model_path, config_path, model_item = manager.download_model("tts_models/zh-CN/baker/tacotron2-DDC-GST") |
|
synthesizer = Synthesizer( |
|
model_path, config_path, None, None, None, |
|
) |
|
|
|
|
|
def inference(text: str): |
|
wavs = synthesizer.tts(text) |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
synthesizer.save_wav(wavs, fp) |
|
return fp.name |
|
|
|
def fx_m(s:str): |
|
headers= {"Content-Type": "application/json"} |
|
url="https://m-formatter.azurewebsites.net/api/v2" |
|
data={'code':s,'resultType':'text'} |
|
respose=requests.post(url,json=data,headers=headers) |
|
ms=respose.json() |
|
return ms['result'] |
|
|
|
def fx_dax(s:str): |
|
url="https://www.daxformatter.com/" |
|
data = {"embed":"1","l":"short","fx":s} |
|
ct=requests.post(url = url,data = data) |
|
html=ct.text |
|
s1=html.split('<div class="result">')[1] |
|
s2='<div class="result">'+s1.split('<a href')[0]+'<a href="https://pbihub.cn/users/44" target="_top"><img src="https://pbihub.cn/uploads/avatars/44_1536391253.jpg?imageView2/1/w/380/h/380" alt="万剑归宗" class="badge" width="380" height="380"></a>' |
|
return s2 |
|
|
|
def fx_datatable(s:str): |
|
a=exec(s) |
|
return {k: v for k, v in locals().items() if isinstance(v,pd.DataFrame)} |
|
|
|
def fx_dd(tk:str,s:str): |
|
headers= {"Content-Type": "application/json"} |
|
url="https://oapi.dingtalk.com/robot/send?access_token="+tk |
|
data={'msgtype':'text','text':{'title': '吹牛逼',"content": s}, 'at': {'atMobiles': [], 'isAtAll': True}} |
|
response=requests.post(url,json=data,headers=headers) |
|
return response.text |
|
|
|
def dd_ocr(tk,sl,dt): |
|
headers= {"Content-Type": "application/json"} |
|
url="https://oapi.dingtalk.com/topapi/ocr/structured/recognize?access_token="+tk |
|
dc={"身份证":"idcard","增值税发票":"invoice","营业执照":"blicense","银行卡":"bank_card","车牌":"car_no","机动车发票":"car_invoice","驾驶证":"driving_license","行驶证":"vehicle_license","火车票":"train_ticket","定额发票":"quota_invoice","出租车发票":"taxi_ticket","机票行程单":"air_itinerary","审批表单":"approval_table","花名册":"roster"} |
|
data={"image_url":sl,"type":dc[dt]} |
|
response=requests.post(url,json=data,headers=headers) |
|
return response.json() |
|
|
|
demo=gr.Blocks() |
|
with demo: |
|
with gr.Tabs(): |
|
with gr.TabItem("测试1"): |
|
with gr.Column(): |
|
text_input=gr.Textbox(placeholder='请输入测试字符串',label="请输入需要MD5加密的测试内容") |
|
text_output=gr.Textbox(label="输出",visible=False) |
|
text_input.change(fn=lambda visible: gr.update(visible=True), inputs=text_input, outputs=text_output) |
|
bb_button=gr.Button("运行") |
|
bb_button.click(fx, inputs=text_input, outputs=text_output,api_name='md5') |
|
with gr.Column(): |
|
gr.Markdown("# TTS文本字符串转语音合成训练") |
|
TTS_input=gr.Textbox(label="输入文本",default="你好吗?我很好。") |
|
TTS_button=gr.Button("合成") |
|
TTS_button.click(inference, inputs=TTS_input, outputs=gr.Audio(label="输出合成结果"),api_name='tts') |
|
with gr.TabItem("M-Formatter"): |
|
gr.Markdown("# PowerQuery M语言脚本格式化测试") |
|
M_input=gr.Textbox(label="请填写需要格式化的M脚本",default="let a=1,b=2 in a+b",lines=18) |
|
M_output=gr.Textbox(label="格式化结果",lines=50) |
|
M_button=gr.Button("开始格式化>>") |
|
M_button.click(fx_m, inputs=M_input, outputs=M_output,api_name='M') |
|
|
|
with gr.TabItem("DAX-Formatter"): |
|
gr.Markdown("# DAX表达式格式化测试") |
|
with gr.Row(): |
|
DAX_input=gr.Textbox(label="请填写需要格式化的DAX表达式",default="扯淡=CALCULATE(VALUES('价格表'[单价]),FILTER('价格表','价格表'[产品]='销售表'[产品]))",lines=28) |
|
DAX_button=gr.Button("格式化>>") |
|
DAX_output=gr.HTML(label="DAX表达式格式化结果") |
|
DAX_button.click(fx_dax, inputs=DAX_input, outputs=DAX_output,api_name='DAX') |
|
|
|
with gr.TabItem("Python-Execute"): |
|
gr.Markdown("# Python脚本测试") |
|
d_input=gr.Textbox(label="请填写需要datatable库处理的脚本",lines=18) |
|
d_output=gr.JSON(label="输出>") |
|
d_button=gr.Button("开始编译>>") |
|
d_button.click(fx_datatable, inputs=d_input, outputs=d_output,api_name='datatable') |
|
|
|
with gr.TabItem("钉钉群消息推送"): |
|
gr.Markdown("# 推送测试") |
|
dd_input=[gr.Textbox(label="请填写机器人token"),gr.Textbox(label="请填写需要推送的信息",lines=10)] |
|
dd_output=gr.Textbox(label="推送提示") |
|
dd_button=gr.Button("提交") |
|
dd_button.click(fx_dd, inputs=dd_input, outputs=dd_output,api_name='dingding_robot') |
|
|
|
with gr.TabItem("钉钉ocr"): |
|
gr.Markdown("# 网络图片OCR识别") |
|
ocr_input=[gr.Textbox(label="请填写ocr_token"),gr.Textbox(label="请填写图片网址"),gr.Radio(["身份证","增值税发票","营业执照","银行卡","车牌","机动车发票","驾驶证","行驶证","火车票","定额发票","出租车发票","机票行程单","审批表单","花名册"],value="营业执照增值税发票",label="请选择识别类型:")] |
|
ocr_button=gr.Button("开始识别>>") |
|
ocr_output=gr.JSON(label="识别结果") |
|
ocr_button.click(dd_ocr, inputs=ocr_input, outputs=ocr_output,api_name='dingding_ocr') |
|
demo.launch() |
|
|