coan commited on
Commit
3a37b43
verified
1 Parent(s): d7771c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -20
app.py CHANGED
@@ -1,26 +1,29 @@
1
- import gradio as gr
 
 
 
 
 
 
 
 
 
 
2
  from sklearn.datasets import load_iris
3
  from sklearn.model_selection import train_test_split
4
- from sklearn.linear_model import LogisticRegression
5
- from joblib import dump
6
 
7
- def train_model():
8
- # Carregar e dividir o dataset
9
- data = load_iris()
10
- X = data.data
11
- y = data.target
12
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
13
 
14
- # Treinando o modelo
15
- model = LogisticRegression()
16
- model.fit(X_train, y_train)
17
 
18
- # Salvar o modelo em um arquivo na pasta /mnt/data/
19
- model_filename = "/mnt/data/model.pkl"
20
- dump(model, model_filename)
21
-
22
- return f"Modelo treinado e salvo em: {model_filename}"
23
 
24
- # Defina a interface Gradio
25
- iface = gr.Interface(fn=train_model, inputs=[], outputs=["text"])
26
- iface.launch()
 
1
+ import os
2
+
3
+ # Definir o caminho do diret贸rio
4
+ diretorio = "/mnt/data"
5
+
6
+ # Criar o diret贸rio, se ele n茫o existir
7
+ os.makedirs(diretorio, exist_ok=True)
8
+
9
+ # Agora voc锚 pode salvar o modelo nesse diret贸rio
10
+ from joblib import dump
11
+ from sklearn.linear_model import LogisticRegression
12
  from sklearn.datasets import load_iris
13
  from sklearn.model_selection import train_test_split
 
 
14
 
15
+ # Carregar e dividir o dataset
16
+ data = load_iris()
17
+ X = data.data
18
+ y = data.target
19
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
20
 
21
+ # Treinar o modelo
22
+ model = LogisticRegression()
23
+ model.fit(X_train, y_train)
24
 
25
+ # Salvar o modelo no diret贸rio rec茅m-criado
26
+ model_filename = os.path.join(diretorio, "model.pkl")
27
+ dump(model, model_filename)
 
 
28
 
29
+ print(f"Modelo salvo em: {model_filename}")