File size: 8,206 Bytes
4eaa76b
7e12b4f
786bb0f
3c3463c
a858ac0
0468cdf
a858ac0
 
 
9d87d2c
a858ac0
80cdbfa
786bb0f
a066122
 
 
 
 
79a2261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6747914
0dea974
 
 
 
6747914
0dea974
 
 
 
 
 
 
a858ac0
0dea974
6747914
 
 
 
 
 
 
 
 
 
 
0dea974
 
 
 
 
6747914
0dea974
 
 
 
 
6747914
0dea974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e12b4f
a066122
 
6747914
 
b443c6a
a1cf7d9
 
 
 
a066122
 
 
 
ec76c44
a066122
 
 
054299c
 
aa18147
00b9c43
5673631
054299c
a066122
 
 
8b1d869
a066122
 
 
 
5673631
a066122
 
 
 
6747914
2e1ea9c
 
 
a066122
6747914
 
a066122
6747914
a066122
6747914
a066122
 
 
6747914
 
2e1ea9c
6747914
 
a066122
 
 
 
 
 
 
 
 
 
 
 
6747914
a066122
 
 
 
 
 
 
 
 
 
7e12b4f
 
6747914
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import gradio as gr
from openai import OpenAI
from optillm.cot_reflection import cot_reflection
from optillm.rto import round_trip_optimization
from optillm.z3_solver import Z3SymPySolverSystem
from optillm.self_consistency import advanced_self_consistency_approach
from optillm.plansearch import plansearch
from optillm.leap import leap
from optillm.reread import re2_approach

API_KEY = os.environ.get("OPENROUTER_API_KEY")

def compare_responses(message, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p):
    response1 = respond(message, [], model1, approach1, system_message, max_tokens, temperature, top_p)
    response2 = respond(message, [], model2, approach2, system_message, max_tokens, temperature, top_p)
    return response1, response2

def parse_conversation(messages):
    system_prompt = ""
    conversation = []
    
    for message in messages:
        role = message['role']
        content = message['content']
        
        if role == 'system':
            system_prompt = content
        elif role in ['user', 'assistant']:
            conversation.append(f"{role.capitalize()}: {content}")
    
    initial_query = "\n".join(conversation)
    return system_prompt, initial_query

def respond(message, history, model, approach, system_message, max_tokens, temperature, top_p, image=None):
    try:
        client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1")
        messages = [{"role": "system", "content": system_message}]
        
        # Add history if available
        for val in history:
            if val[0]:
                messages.append({"role": "user", "content": val[0]})
            if val[1]:
                messages.append({"role": "assistant", "content": val[1]})
        
        messages.append({"role": "user", "content": message})
        
        if approach == "none":
            # Prepare the API request data
            data = {
                "model": model,
                "messages": messages,
                "max_tokens": max_tokens,
                "temperature": temperature,
                "top_p": top_p,
            }
            if image:
                data["image"] = image  # Add image if provided

            response = client.chat.completions.create(
                extra_headers={
                    "HTTP-Referer": "https://github.com/codelion/optillm",
                    "X-Title": "optillm"
                },
                **data
            )
            return response.choices[0].message.content
        else:
            system_prompt, initial_query = parse_conversation(messages)
            
            # Handle different approaches
            if approach == 'rto':
                final_response, _ = round_trip_optimization(system_prompt, initial_query, client, model)
            elif approach == 'z3':
                z3_solver = Z3SymPySolverSystem(system_prompt, client, model)
                final_response, _ = z3_solver.process_query(initial_query)
            elif approach == "self_consistency":
                final_response, _ = advanced_self_consistency_approach(system_prompt, initial_query, client, model)
            elif approach == "cot_reflection":
                final_response, _ = cot_reflection(system_prompt, initial_query, client, model)
            elif approach == 'plansearch':
                response, _ = plansearch(system_prompt, initial_query, client, model)
                final_response = response[0]
            elif approach == 'leap':
                final_response, _ = leap(system_prompt, initial_query, client, model)
            elif approach == 're2':
                final_response, _ = re2_approach(system_prompt, initial_query, client, model)
            
            return final_response
            
    except Exception as e:
        error_message = f"Error in respond function: {str(e)}\nType: {type(e).__name__}"
        print(error_message)

def create_model_dropdown():
    return gr.Dropdown(
        [ "meta-llama/llama-3.1-8b-instruct:free", "nousresearch/hermes-3-llama-3.1-405b:free", "meta-llama/llama-3.2-1b-instruct:free",
         "mistralai/mistral-7b-instruct:free", "mistralai/pixtral-12b:free", "meta-llama/llama-3.1-70b-instruct:free",
         "qwen/qwen-2-7b-instruct:free", "qwen/qwen-2-vl-7b-instruct:free", "google/gemma-2-9b-it:free", "liquid/lfm-40b:free", "meta-llama/llama-3.1-405b-instruct:free",
         "openchat/openchat-7b:free", "meta-llama/llama-3.2-90b-vision-instruct:free", "meta-llama/llama-3.2-11b-vision-instruct:free",
         "meta-llama/llama-3-8b-instruct:free", "meta-llama/llama-3.2-3b-instruct:free", "microsoft/phi-3-medium-128k-instruct:free",
         "microsoft/phi-3-mini-128k-instruct:free", "huggingfaceh4/zephyr-7b-beta:free"],
        value="nousresearch/hermes-3-llama-3.1-405b:free", label="Model"
    )

def create_approach_dropdown():
    return gr.Dropdown(
        ["none", "leap", "plansearch", "cot_reflection", "rto", "self_consistency", "z3", "re2"],
        value="none", label="Approach"
    )

html = """<iframe src="https://ghbtns.com/github-btn.html?user=codelion&repo=optillm&type=star&count=true&size=large" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
"""

with gr.Blocks() as demo:
    gr.Markdown("# optillm - LLM Optimization Comparison")
    gr.HTML(html)
    
    with gr.Row():
        system_message = gr.Textbox(value="", label="System message")
        max_tokens = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens")
        temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
    
    with gr.Tabs():
        with gr.TabItem("Chat"):
            model = create_model_dropdown()
            approach = create_approach_dropdown()
            chatbot = gr.Chatbot()
            msg = gr.Textbox()
            image = gr.Image(type="pil", label="Upload Image (optional)", optional=True)
            with gr.Row():
                submit = gr.Button("Submit")
                clear = gr.Button("Clear")

            def user(user_message, history, uploaded_image):
                return "", history + [[user_message, None]], uploaded_image

            def bot(history, model, approach, system_message, max_tokens, temperature, top_p, uploaded_image):
                user_message = history[-1][0]
                bot_message = respond(user_message, history[:-1], model, approach, system_message, max_tokens, temperature, top_p, image=uploaded_image)
                history[-1][1] = bot_message
                return history

            msg.submit(user, [msg, chatbot, image], [msg, chatbot, image]).then(
                bot, [chatbot, model, approach, system_message, max_tokens, temperature, top_p, image], chatbot
            )
            submit.click(user, [msg, chatbot, image], [msg, chatbot, image]).then(
                bot, [chatbot, model, approach, system_message, max_tokens, temperature, top_p, image], chatbot
            )
            clear.click(lambda: None, None, chatbot, queue=False)

        with gr.TabItem("Compare"):
            with gr.Row():
                model1 = create_model_dropdown()
                approach1 = create_approach_dropdown()
                model2 = create_model_dropdown()
                approach2 = create_approach_dropdown()
            
            compare_input = gr.Textbox(label="Enter your message for comparison")
            compare_button = gr.Button("Compare")
            compare_image = gr.Image(type="pil", label="Upload Image for Comparison", optional=True)
            
            with gr.Row():
                output1 = gr.Textbox(label="Response 1")
                output2 = gr.Textbox(label="Response 2")
            
            compare_button.click(
                compare_responses,
                inputs=[compare_input, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p],
                outputs=[output1, output2]
            )

if __name__ == "__main__":
    demo.launch()