File size: 7,245 Bytes
4eaa76b
7e12b4f
4eaa76b
786bb0f
4527045
3c3463c
a858ac0
 
 
 
 
 
9d87d2c
a858ac0
7e12b4f
80cdbfa
786bb0f
a066122
 
 
 
 
79a2261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a066122
80cdbfa
7e12b4f
 
a066122
 
7e12b4f
 
a066122
 
2e1ea9c
 
 
 
a066122
 
 
 
 
 
 
 
79a2261
a066122
d9b4813
a066122
 
d9b4813
a066122
d9b4813
a066122
 
d9b4813
a066122
d9b4813
a066122
d9b4813
a066122
d9b4813
9d87d2c
d9b4813
a858ac0
4527045
7e12b4f
4527045
 
 
 
 
 
 
 
7e12b4f
4527045
 
7e12b4f
a066122
 
d9b4813
 
 
2e7503e
d9b4813
a066122
 
 
 
9d87d2c
a066122
 
 
054299c
 
aa18147
00b9c43
5673631
054299c
a066122
 
 
8b1d869
a066122
 
 
 
5673631
a066122
 
 
 
2e1ea9c
 
 
a066122
 
 
 
 
 
 
 
 
 
 
 
2e1ea9c
 
 
a066122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e12b4f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import gradio as gr

from openai import OpenAI

from optillm.cot_reflection import cot_reflection
from optillm.rto import round_trip_optimization
from optillm.z3_solver import Z3SolverSystem
from optillm.self_consistency import advanced_self_consistency_approach
from optillm.rstar import RStar
from optillm.plansearch import plansearch
from optillm.leap import leap
from optillm.reread import re2_approach


API_KEY = os.environ.get("OPENROUTER_API_KEY")

def compare_responses(message, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p):
    response1 = respond(message, [], model1, approach1, system_message, max_tokens, temperature, top_p)
    response2 = respond(message, [], model2, approach2, system_message, max_tokens, temperature, top_p)
    return response1, response2

def parse_conversation(messages):
    system_prompt = ""
    conversation = []
    
    for message in messages:
        role = message['role']
        content = message['content']
        
        if role == 'system':
            system_prompt = content
        elif role in ['user', 'assistant']:
            conversation.append(f"{role.capitalize()}: {content}")
    
    initial_query = "\n".join(conversation)
    return system_prompt, initial_query

def respond(message, history, model, approach, system_message, max_tokens, temperature, top_p):
    client = OpenAI(api_key=API_KEY, base_url="https://openrouter.ai/api/v1")
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]: messages.append({"role": "user", "content": val[0]})
        if val[1]: messages.append({"role": "assistant", "content": val[1]})
    messages.append({"role": "user", "content": message})

    if approach == "none":
        response = client.chat.completions.create(
            extra_headers={
            "HTTP-Referer": "https://github.com/codelion/optillm",
            "X-Title": "optillm"    
            },
            model=model,
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        )
        return response.choices[0].message.content
    else:
        system_prompt, initial_query = parse_conversation(messages)
        if approach == 'rto':
            final_response, _ = round_trip_optimization(system_prompt, initial_query, client, model)
        elif approach == 'z3':
            z3_solver = Z3SolverSystem(system_prompt, client, model)
            final_response, _ = z3_solver.process_query(initial_query)
        elif approach == "self_consistency":
            final_response, _ = advanced_self_consistency_approach(system_prompt, initial_query, client, model)
        elif approach == "rstar":
            rstar = RStar(system_prompt, client, model)
            final_response, _ = rstar.solve(initial_query)
        elif approach == "cot_reflection":
            final_response, _ = cot_reflection(system_prompt, initial_query, client, model)
        elif approach == 'plansearch':
            final_response, _ = plansearch(system_prompt, initial_query, client, model)[0]
        elif approach == 'leap':
            final_response, _ = leap(system_prompt, initial_query, client, model)
        elif approach == 're2':
            final_response, _ = re2_approach(system_prompt, initial_query, client, model)
        
    return final_response

    # for message in client.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     stream=True,
    #     temperature=temperature,
    #     top_p=top_p,
    # ):
    #     token = message.choices[0].delta.content

    #     response += token
    #     yield response

def create_model_dropdown():
    return gr.Dropdown(
        [ "meta-llama/llama-3.1-8b-instruct:free", "nousresearch/hermes-3-llama-3.1-405b:free",
          "mistralai/mistral-7b-instruct:free","mistralai/pixtral-12b:free",
         "qwen/qwen-2-7b-instruct:free", "qwen/qwen-2-vl-7b-instruct:free", "google/gemma-2-9b-it:free", "google/gemini-flash-8b-1.5-exp",
        "google/gemini-flash-1.5-exp", "google/gemini-pro-1.5-exp"],
        value="meta-llama/llama-3.1-8b-instruct:free", label="Model"
    )

def create_approach_dropdown():
    return gr.Dropdown(
        ["none", "leap", "plansearch", "rstar", "cot_reflection", "rto", "self_consistency", "z3", "re2"],
        value="none", label="Approach"
    )

html = """<iframe src="https://ghbtns.com/github-btn.html?user=codelion&repo=optillm&type=star&count=true&size=large" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
"""

with gr.Blocks() as demo:
    gr.Markdown("# optillm - LLM Optimization Comparison")
    gr.HTML(html)
    
    with gr.Row():
        system_message = gr.Textbox(value="", label="System message")
        max_tokens = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens")
        temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
    
    with gr.Tabs():
        with gr.TabItem("Chat"):
            model = create_model_dropdown()
            approach = create_approach_dropdown()
            chatbot = gr.Chatbot()
            msg = gr.Textbox()
            with gr.Row():
                submit = gr.Button("Submit")
                clear = gr.Button("Clear")

            def user(user_message, history):
                return "", history + [[user_message, None]]

            def bot(history, model, approach, system_message, max_tokens, temperature, top_p):
                user_message = history[-1][0]
                bot_message = respond(user_message, history[:-1], model, approach, system_message, max_tokens, temperature, top_p)
                history[-1][1] = bot_message
                return history

            msg.submit(user, [msg, chatbot], [msg, chatbot]).then(
                bot, [chatbot, model, approach, system_message, max_tokens, temperature, top_p], chatbot
            )
            submit.click(user, [msg, chatbot], [msg, chatbot]).then(
                bot, [chatbot, model, approach, system_message, max_tokens, temperature, top_p], chatbot
            )
            clear.click(lambda: None, None, chatbot, queue=False)

        with gr.TabItem("Compare"):
            with gr.Row():
                model1 = create_model_dropdown()
                approach1 = create_approach_dropdown()
                model2 = create_model_dropdown()
                approach2 = create_approach_dropdown()
            
            compare_input = gr.Textbox(label="Enter your message for comparison")
            compare_button = gr.Button("Compare")
            
            with gr.Row():
                output1 = gr.Textbox(label="Response 1")
                output2 = gr.Textbox(label="Response 2")
            
            compare_button.click(
                compare_responses,
                inputs=[compare_input, model1, approach1, model2, approach2, system_message, max_tokens, temperature, top_p],
                outputs=[output1, output2]
            )

if __name__ == "__main__":
    demo.launch()