The CodeGen architecture follows a standard transformer decoder with left-to-right causal masking. With rotary position embedding for the positional encoding [(Su et al., 2021)](https://arxiv.org/abs/2104.09864), and a context length of 2048. CodeGen models are trained in various sizes. | |
<div align="center"> | |
|Model | # parameters | | |
| - | - | | |
| [Salesforce/codegen-350m-mono](https://huggingface.co/Salesforce/codegen-350-mono) | 350M | | |
| [Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) | 2.7B | | |
| [Salesforce/codegen-6B-mono](https://huggingface.co/Salesforce/codegen-6B-mono) | 6.1B | | |
| [Salesforce/codegen-16B-mono](https://huggingface.co/Salesforce/codegen-16B-mono) | 16.1B | | |
</div> | |
You can load the model and tokenizer directly from 🤗 [`transformers`](https://huggingface.co/docs/transformers/index): | |
```python | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-16B-mono') | |
model = AutoModelForCausalLM.from_pretrained('Salesforce/codegen-16B-mono') | |
inputs = tokenizer("def hello_world():", return_tensors="pt") | |
outputs = model(**inputs) | |
``` |