Gregor Betz
initial code upload
13e8963 unverified
raw
history blame
4.81 kB
import glob
import json
import datasets # type: ignore
from huggingface_hub import snapshot_download # type: ignore
import pandas as pd # type: ignore
from backend.envs import EVAL_DATASET, TRACES_DATASET, TOKEN, EVAL_RESULTS_PATH
SUBSETS = ["base","cot","orig"]
def load_cot_data():
####
# Load the evaluation results data
####
# download raw data
snapshot_download(
repo_id=EVAL_DATASET,
revision="main",
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
max_workers=60,
token=TOKEN
)
# get all models for which results are stored
models = []
for path in glob.glob(f"{EVAL_RESULTS_PATH}/data/*/*", recursive=False):
models.append(path.replace(f"{EVAL_RESULTS_PATH}/data/",""))
# load the evaluation results and create a dataframe
results = []
for model in models:
for subset in SUBSETS:
result_files = glob.glob(f"{EVAL_RESULTS_PATH}/data/{model}/{subset}/**/*.json", recursive=True)
for json_filepath in result_files:
with open(json_filepath) as fp:
data = json.load(fp)
if "results" in data.keys():
for k,v in data["results"].items():
record = v.copy()
record["model"] = model
record["subset"] = subset
results.append(record)
df_results = pd.DataFrame(results)
del results
# postprocess task/config data
def split_alias(alias: str) -> pd.Series:
if alias[-5:]=="_base":
alias = alias[:-5]
elif alias[-4:]=="_cot":
alias = alias[:-4]
if "_" not in alias:
task = alias
config = ""
else:
config, task = alias.split("_")
return pd.Series({"task": task, "config": config})
df_results = pd.concat([df_results, df_results.alias.apply(split_alias)], axis=1)
# baseline accuracies in separete df
df_baseline = df_results[df_results.subset.eq("base")].groupby(["model","task"])[["acc,none"]].mean()
# build cot eval df with baseline accuracies in separate column
df_tmp1 = df_results[df_results.subset.eq("cot")].sort_values(by=["model","task","config"])
df_tmp1.reset_index(inplace=True, drop=True)
df_cot = df_tmp1[["model","task","config"]].copy()
df_cot["acc_cot"] = df_tmp1["acc,none"]
df_cot["acc_base"] = df_cot.apply(lambda row: df_baseline.loc[(row.model, row.task)]["acc,none"], axis=1)
df_cot["acc_gain"] = df_cot.acc_cot - df_cot.acc_base
df_cot["delta_rel"] = (df_cot.acc_cot - df_cot.acc_base)/df_cot.acc_base
# average eval results for all tasks in extra df
df_cot_avg = df_cot.groupby(["model","config"]).mean(numeric_only=True).reset_index()
df_cot_avg["task"] = "all"
# add average results to cot df
df_cot = pd.concat([df_cot_avg, df_cot], ignore_index=True)
####
# Load the traces data
####
# load traces data and extract configs
dataset = datasets.load_dataset(TRACES_DATASET, split="test", token=TOKEN)
dataset = dataset.select_columns(["config_data"])
df_cottraces = pd.DataFrame({"config_data": dataset["config_data"]})
del dataset
config_data = []
for data in df_cottraces.config_data.to_list():
config_data.append(dict(data))
del df_cottraces
df_cotconfigs = pd.DataFrame(config_data)
df_cotconfigs.drop_duplicates(inplace=True, ignore_index=True)
df_cotconfigs
# add cot configs data to df_cot
def select_config_data(row):
df_selected = df_cotconfigs[df_cotconfigs.name.eq(row.config) & df_cotconfigs.model.eq(row.model)]
if len(df_selected) == 0:
print(f"Config {row.config} not found for model {row.model}")
return None
return df_selected.drop(columns=["name", "model", "task"]).iloc[0]
df_cot = pd.concat(
[
df_cot,
df_cot.apply(select_config_data, axis=1)
],
axis=1
)
# accuracy values in percent
for col in ['acc_base', 'acc_cot', 'acc_gain']:
df_cot[col] = 100 * df_cot[col]
####
# Create error dataframe
####
df_cot_err = df_cot.groupby(["model","task"]).agg({'acc_gain': ['mean', 'min', 'max'], "acc_base": "mean", "acc_cot": "mean"})
df_cot_err.columns = ['-'.join(col).strip() for col in df_cot_err.columns.values]
df_cot_err["acc_gain-err"] = 0.5 * (df_cot_err["acc_gain-max"] - df_cot_err["acc_gain-min"])
df_cot_err.reset_index(inplace=True)
df_cot_err.rename(columns={"acc_base-mean": "base accuracy", "acc_cot-mean": "cot accuracy", "acc_gain-mean": "marginal acc. gain"}, inplace=True)
return df_cot_err, df_cot