Spaces:
Runtime error
Runtime error
File size: 4,148 Bytes
acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab 4ddb621 acb3eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
from functools import lru_cache
from random import randint
from typing import Dict, List
import cv2
import gradio as gr
import numpy as np
import PIL
import torch
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
CHECKPOINT_PATH = "sam_vit_h_4b8939.pth"
MODEL_TYPE = "default"
MAX_WIDTH = MAX_HEIGHT = 800
THRESHOLD = 0.05
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@lru_cache
def load_mask_generator(model_size: str = "large") -> SamAutomaticMaskGenerator:
sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device)
mask_generator = SamAutomaticMaskGenerator(sam)
return mask_generator
def adjust_image_size(image: np.ndarray) -> np.ndarray:
height, width = image.shape[:2]
if height > width:
if height > MAX_HEIGHT:
height, width = MAX_HEIGHT, int(MAX_HEIGHT / height * width)
else:
if width > MAX_WIDTH:
height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
image = cv2.resize(image, (width, height))
return image
def filter_masks(
masks: List[Dict[str, np.ndarray]],
predicted_iou_threshold: float,
stability_score_threshold: float,
query: str,
clip_threshold: float,
) -> List[np.ndarray]:
filtered_masks: List[Dict[str, np.ndarray]] = []
for mask in masks:
if (
mask["predicted_iou"] < predicted_iou_threshold
or mask["stability_score"] < stability_score_threshold
):
continue
filtered_masks.append(mask)
return [mask["segmentation"] for mask in filtered_masks]
def draw_masks(
image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
) -> np.ndarray:
for mask in masks:
color = [randint(127, 255) for _ in range(3)]
# draw mask overlay
colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
# draw contour
contours, _ = cv2.findContours(
np.uint8(mask), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
return image
def segment(
predicted_iou_threshold: float,
stability_score_threshold: float,
clip_threshold: float,
image_path: str,
query: str,
) -> PIL.ImageFile.ImageFile:
mask_generator = load_mask_generator()
# reduce the size to save gpu memory
image = adjust_image_size(cv2.imread(image_path))
masks = mask_generator.generate(image)
masks = filter_masks(
masks, predicted_iou_threshold, stability_score_threshold, query, clip_threshold
)
image = draw_masks(image, masks)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
return image
demo = gr.Interface(
fn=segment,
inputs=[
gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
gr.Slider(0, 1, value=0.05, label="clip_threshold"),
gr.Image(type="filepath"),
"text",
],
outputs="image",
allow_flagging="never",
title="Segment Anything with CLIP",
examples=[
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
"",
],
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
"",
],
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
"",
],
[
0.9,
0.8,
0.05,
os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
"",
],
],
)
if __name__ == "__main__":
demo.launch()
|