File size: 4,148 Bytes
acb3eab
 
 
4ddb621
 
acb3eab
4ddb621
acb3eab
4ddb621
 
 
acb3eab
 
 
 
4ddb621
acb3eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddb621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb3eab
 
 
 
 
 
 
4ddb621
 
 
acb3eab
 
 
 
 
4ddb621
acb3eab
 
 
 
 
4ddb621
 
 
 
 
 
 
acb3eab
 
 
 
4ddb621
 
 
acb3eab
 
 
 
 
 
 
 
4ddb621
 
 
 
 
 
 
acb3eab
 
 
 
4ddb621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acb3eab
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
from functools import lru_cache
from random import randint
from typing import Dict, List

import cv2
import gradio as gr
import numpy as np
import PIL
import torch
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry

CHECKPOINT_PATH = "sam_vit_h_4b8939.pth"
MODEL_TYPE = "default"
MAX_WIDTH = MAX_HEIGHT = 800
THRESHOLD = 0.05
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


@lru_cache
def load_mask_generator(model_size: str = "large") -> SamAutomaticMaskGenerator:
    sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device)
    mask_generator = SamAutomaticMaskGenerator(sam)
    return mask_generator


def adjust_image_size(image: np.ndarray) -> np.ndarray:
    height, width = image.shape[:2]
    if height > width:
        if height > MAX_HEIGHT:
            height, width = MAX_HEIGHT, int(MAX_HEIGHT / height * width)
    else:
        if width > MAX_WIDTH:
            height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
    image = cv2.resize(image, (width, height))
    return image


def filter_masks(
    masks: List[Dict[str, np.ndarray]],
    predicted_iou_threshold: float,
    stability_score_threshold: float,
    query: str,
    clip_threshold: float,
) -> List[np.ndarray]:
    filtered_masks: List[Dict[str, np.ndarray]] = []
    for mask in masks:
        if (
            mask["predicted_iou"] < predicted_iou_threshold
            or mask["stability_score"] < stability_score_threshold
        ):
            continue
        filtered_masks.append(mask)

    return [mask["segmentation"] for mask in filtered_masks]


def draw_masks(
    image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
) -> np.ndarray:
    for mask in masks:
        color = [randint(127, 255) for _ in range(3)]

        # draw mask overlay
        colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
        colored_mask = np.moveaxis(colored_mask, 0, -1)
        masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
        image_overlay = masked.filled()
        image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)

        # draw contour
        contours, _ = cv2.findContours(
            np.uint8(mask), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
        )
        cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
    return image


def segment(
    predicted_iou_threshold: float,
    stability_score_threshold: float,
    clip_threshold: float,
    image_path: str,
    query: str,
) -> PIL.ImageFile.ImageFile:
    mask_generator = load_mask_generator()
    # reduce the size to save gpu memory
    image = adjust_image_size(cv2.imread(image_path))
    masks = mask_generator.generate(image)
    masks = filter_masks(
        masks, predicted_iou_threshold, stability_score_threshold, query, clip_threshold
    )
    image = draw_masks(image, masks)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
    return image


demo = gr.Interface(
    fn=segment,
    inputs=[
        gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
        gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
        gr.Slider(0, 1, value=0.05, label="clip_threshold"),
        gr.Image(type="filepath"),
        "text",
    ],
    outputs="image",
    allow_flagging="never",
    title="Segment Anything with CLIP",
    examples=[
        [
            0.9,
            0.8,
            0.05,
            os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
            "",
        ],
        [
            0.9,
            0.8,
            0.05,
            os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
            "",
        ],
        [
            0.9,
            0.8,
            0.05,
            os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
            "",
        ],
        [
            0.9,
            0.8,
            0.05,
            os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
            "",
        ],
    ],
)

if __name__ == "__main__":
    demo.launch()