File size: 13,539 Bytes
f53b39e 98fae69 487d9ae ec9c0a2 e3617d5 f53b39e b2eead7 f53b39e f07e7f2 20e7d5a f53b39e 487d9ae f53b39e 487d9ae f53b39e 487d9ae f53b39e 71692ae e068242 f53b39e 04d1115 30580b7 f53b39e 04d1115 f53b39e 04d1115 f53b39e b2eead7 04d1115 b2eead7 04d1115 30580b7 f53b39e 04d1115 f53b39e b2eead7 f53b39e b2eead7 04d1115 748a455 04d1115 0fb5fec f53b39e ea2abec f53b39e 04d1115 71692ae b2eead7 f53b39e 71692ae 748a455 71692ae 487d9ae ec9c0a2 f53b39e 487d9ae f53b39e e23a503 f53b39e 487d9ae f53b39e 487d9ae f53b39e 487d9ae f53b39e 487d9ae f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# gradio demo
# --------------------------------------------------------
import argparse
import math
import gradio
import os
import torch
import numpy as np
import tempfile
import functools
import copy
from tqdm import tqdm
import cv2
from PIL import Image
import os.path as path
import sys
import tempfile
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.image_pairs import make_pairs
from dust3r.utils.image_pose import load_images, rgb, enlarge_seg_masks, resize_numpy_image
from dust3r.utils.device import to_numpy
from dust3r.cloud_opt_flow import global_aligner, GlobalAlignerMode
import matplotlib.pyplot as pl
from transformers import pipeline
from dust3r.utils.viz_demo import convert_scene_output_to_glb
import depth_pro
import spaces
from huggingface_hub import hf_hub_download
pl.ion()
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa
sys.path.insert(0, HERE_PATH) # noqa
# for gpu >= Ampere and pytorch >= 1.12
torch.backends.cuda.matmul.allow_tf32 = True
batch_size = 1
tmpdirname = tempfile.mkdtemp(suffix='_align3r_gradio_demo')
image_size = 512
silent = False
gradio_delete_cache = 7200
print(f'{HERE_PATH}/third_party/ml-depth-pro/checkpoints/')
hf_hub_download(repo_id="apple/DepthPro", filename='depth_pro.pt', local_dir=f'{HERE_PATH}/third_party/ml-depth-pro/checkpoints/')
class FileState:
def __init__(self, outfile_name=None):
self.outfile_name = outfile_name
def __del__(self):
if self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
self.outfile_name = None
def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05, show_cam=True, save_name=None, thr_for_init_conf=True):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene is None:
return None
# post processes
if clean_depth:
scene = scene.clean_pointcloud()
if mask_sky:
scene = scene.mask_sky()
# get optimized values from scene
rgbimg = scene.imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = to_numpy(scene.get_pts3d(raw_pts=True))
scene.min_conf_thr = min_conf_thr
scene.thr_for_init_conf = thr_for_init_conf
msk = to_numpy(scene.get_masks())
cmap = pl.get_cmap('viridis')
cam_color = [cmap(i/len(rgbimg))[:3] for i in range(len(rgbimg))]
cam_color = [(255*c[0], 255*c[1], 255*c[2]) for c in cam_color]
return convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size, show_cam=show_cam, silent=silent, save_name=save_name,
cam_color=cam_color)
# @spaces.GPU(duration=180)
def generate_monocular_depth_maps(img_list, depth_prior_name):
depth_list = []
focallength_px_list = []
if depth_prior_name=='Depth Pro':
model, transform = depth_pro.create_model_and_transforms(device='cuda')
model.eval()
for image_path in tqdm(img_list):
#path_depthpro = image_path.replace('.png','_pred_depth_depthpro.npz').replace('.jpg','_pred_depth_depthpro.npz')
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
# Run inference.
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"].cpu().numpy() # Depth in [m].
focallength_px=prediction["focallength_px"].cpu()
depth = resize_numpy_image(depth, image.size)
depth_list.append(depth)
focallength_px_list.append(focallength_px)
#np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu())
elif depth_prior_name=='Depth Anything V2':
pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Large-hf",device='cuda')
for image_path in tqdm(img_list):
#path_depthanything = image_path.replace('.png','_pred_depth_depthanything.npz').replace('.jpg','_pred_depth_depthanything.npz')
image = Image.open(image_path)
#print(image.size)
depth = pipe(image)["predicted_depth"].numpy()
depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_LANCZOS4)
focallength_px = 200
print(depth.max(),depth.min())
depth_list.append(depth)
focallength_px_list.append(focallength_px)
#np.savez_compressed(path_depthanything, depth=depth)
return depth_list, focallength_px_list
@spaces.GPU(duration=180)
def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw):
depth_list, focallength_px_list = generate_monocular_depth_maps(filelist, depth_prior_name)
imgs = load_images(filelist, depth_list, focallength_px_list, size=image_size, verbose=not silent,traj_format='custom', depth_prior_name=depth_prior_name)
# pairs = []
# pairs.append((imgs[0], imgs[1]))
# pairs.append((imgs[1], imgs[0]))
scenegraph_type = 'swinstride-5-noncyclic'
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
if depth_prior_name == "Depth Pro":
weights_path = "cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt"
else:
weights_path = "cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)
output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
mode = GlobalAlignerMode.PointCloudOptimizer
print(output)
scene = global_aligner(output, device=device, mode=mode, verbose=not silent, shared_focal = True, temporal_smoothing_weight=0.01, translation_weight=1.0,
flow_loss_weight=0.01, flow_loss_start_epoch=0.1, flow_loss_thre=25, use_self_mask=True,
num_total_iter=300, empty_cache= len(filelist) > 72)
lr = 0.01
if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(init='mst', niter=300, schedule='linear', lr=lr)
# mode = GlobalAlignerMode.PairViewer
# scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
outfile = get_3D_model_from_scene(tmpdirname, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size)
return outfile
def run_example(snapshot, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, inputfiles, **kw):
return local_get_reconstructed_scene(inputfiles, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw)
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "Align3R Demo"
with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
filestate = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">3D Reconstruction with Align3R</h2>')
gradio.HTML('<p>Upload two images (wait for them to be fully uploaded before hitting the run button). '
'If you want to try larger image collections, you can find the more complete version of this demo that you can run locally '
'and more details about the method at <a href="https://github.com/jiah-cloud/Align3R">github.com/jiah-cloud/Align3R</a>. '
'The checkpoint used in this demo is available at <a href="https://huggingface.co/cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt">Align3R (Depth Anything V2)</a> and <a href="https://huggingface.co/cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt">Align3R (Depth Pro)</a>.</p>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
snapshot = gradio.Image(None, visible=False)
with gradio.Row():
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.02, minimum=0.001, maximum=1.0, step=0.001)
depth_prior_name = gradio.Dropdown(
["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.")
min_conf_thr = gradio.Slider(label="min_conf_thr", value=2, minimum=0.0, maximum=20, step=0.01)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
mask_sky = gradio.Checkbox(value=True, label="Mask sky")
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
# not to show camera
show_cam = gradio.Checkbox(value=True, label="Show Camera")
run_btn = gradio.Button("Run")
outmodel = gradio.Model3D()
examples = gradio.Examples(
examples=[
[
os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
2, True, True, True, False, 0.02, "Depth Anything V2",
[os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
]
],
[
os.path.join(HERE_PATH, 'example/breakdance/00000.jpg'),
2, True, True, True, False, 0.02, "Depth Anything V2",
[os.path.join(HERE_PATH, 'example/breakdance/00000.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00001.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00002.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00003.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00004.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00005.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00006.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00007.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00008.jpg'),
os.path.join(HERE_PATH, 'example/breakdance/00009.jpg'),
]
],
[
os.path.join(HERE_PATH, 'example/tennis/00000.jpg'),
2, True, True, True, False, 0.02, "Depth Anything V2",
[os.path.join(HERE_PATH, 'example/tennis/00000.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00001.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00002.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00003.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00004.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00005.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00006.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00007.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00008.jpg'),
os.path.join(HERE_PATH, 'example/tennis/00009.jpg'),
]
],
[
os.path.join(HERE_PATH, 'example/camel/00000.jpg'),
2, True, True, True, False, 0.02, "Depth Anything V2",
[os.path.join(HERE_PATH, 'example/camel/00000.jpg'),
os.path.join(HERE_PATH, 'example/camel/00001.jpg'),
os.path.join(HERE_PATH, 'example/camel/00002.jpg'),
os.path.join(HERE_PATH, 'example/camel/00003.jpg'),
os.path.join(HERE_PATH, 'example/camel/00004.jpg'),
os.path.join(HERE_PATH, 'example/camel/00005.jpg'),
os.path.join(HERE_PATH, 'example/camel/00006.jpg'),
os.path.join(HERE_PATH, 'example/camel/00007.jpg'),
os.path.join(HERE_PATH, 'example/camel/00008.jpg'),
os.path.join(HERE_PATH, 'example/camel/00009.jpg'),
]
],
],
inputs=[snapshot, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, inputfiles],
outputs=[outmodel],
fn=run_example,
cache_examples="lazy",
)
# events
run_btn.click(fn=local_get_reconstructed_scene,
inputs=[inputfiles, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name],
outputs=[outmodel])
demo.launch(show_error=True, share=None, server_name=None, server_port=None)
shutil.rmtree(tmpdirname) |