|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from layer import conv1x1, conv3x3, BasicBlock |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_planes, planes, norm_fn='group', stride=1): |
|
super(ResidualBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
num_groups = planes // 8 |
|
|
|
if norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
if not stride == 1: |
|
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
|
|
elif norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(planes) |
|
self.norm2 = nn.BatchNorm2d(planes) |
|
if not stride == 1: |
|
self.norm3 = nn.BatchNorm2d(planes) |
|
|
|
elif norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(planes) |
|
self.norm2 = nn.InstanceNorm2d(planes) |
|
if not stride == 1: |
|
self.norm3 = nn.InstanceNorm2d(planes) |
|
|
|
elif norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
self.norm2 = nn.Sequential() |
|
if not stride == 1: |
|
self.norm3 = nn.Sequential() |
|
|
|
if stride == 1: |
|
self.downsample = None |
|
|
|
else: |
|
self.downsample = nn.Sequential( |
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) |
|
|
|
|
|
def forward(self, x): |
|
y = x |
|
y = self.relu(self.norm1(self.conv1(y))) |
|
y = self.relu(self.norm2(self.conv2(y))) |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
return self.relu(x+y) |
|
|
|
|
|
|
|
class BottleneckBlock(nn.Module): |
|
def __init__(self, in_planes, planes, norm_fn='group', stride=1): |
|
super(BottleneckBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0) |
|
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride) |
|
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
num_groups = planes // 8 |
|
|
|
if norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) |
|
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) |
|
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
if not stride == 1: |
|
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
|
|
elif norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(planes//4) |
|
self.norm2 = nn.BatchNorm2d(planes//4) |
|
self.norm3 = nn.BatchNorm2d(planes) |
|
if not stride == 1: |
|
self.norm4 = nn.BatchNorm2d(planes) |
|
|
|
elif norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(planes//4) |
|
self.norm2 = nn.InstanceNorm2d(planes//4) |
|
self.norm3 = nn.InstanceNorm2d(planes) |
|
if not stride == 1: |
|
self.norm4 = nn.InstanceNorm2d(planes) |
|
|
|
elif norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
self.norm2 = nn.Sequential() |
|
self.norm3 = nn.Sequential() |
|
if not stride == 1: |
|
self.norm4 = nn.Sequential() |
|
|
|
if stride == 1: |
|
self.downsample = None |
|
|
|
else: |
|
self.downsample = nn.Sequential( |
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4) |
|
|
|
|
|
def forward(self, x): |
|
y = x |
|
y = self.relu(self.norm1(self.conv1(y))) |
|
y = self.relu(self.norm2(self.conv2(y))) |
|
y = self.relu(self.norm3(self.conv3(y))) |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
return self.relu(x+y) |
|
|
|
class BasicEncoder(nn.Module): |
|
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): |
|
super(BasicEncoder, self).__init__() |
|
self.norm_fn = norm_fn |
|
|
|
if self.norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64) |
|
|
|
elif self.norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(64) |
|
|
|
elif self.norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(64) |
|
|
|
elif self.norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.in_planes = 64 |
|
self.layer1 = self._make_layer(64, stride=1) |
|
self.layer2 = self._make_layer(96, stride=2) |
|
self.layer3 = self._make_layer(128, stride=2) |
|
|
|
|
|
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1) |
|
|
|
self.dropout = None |
|
if dropout > 0: |
|
self.dropout = nn.Dropout2d(p=dropout) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): |
|
if m.weight is not None: |
|
nn.init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, dim, stride=1): |
|
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) |
|
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) |
|
layers = (layer1, layer2) |
|
|
|
self.in_planes = dim |
|
return nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
is_list = isinstance(x, tuple) or isinstance(x, list) |
|
if is_list: |
|
batch_dim = x[0].shape[0] |
|
x = torch.cat(x, dim=0) |
|
|
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu1(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
|
|
x = self.conv2(x) |
|
|
|
if self.training and self.dropout is not None: |
|
x = self.dropout(x) |
|
|
|
if is_list: |
|
x = torch.split(x, [batch_dim, batch_dim], dim=0) |
|
|
|
return x |
|
|
|
|
|
class SmallEncoder(nn.Module): |
|
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): |
|
super(SmallEncoder, self).__init__() |
|
self.norm_fn = norm_fn |
|
|
|
if self.norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32) |
|
|
|
elif self.norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(32) |
|
|
|
elif self.norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(32) |
|
|
|
elif self.norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
|
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.in_planes = 32 |
|
self.layer1 = self._make_layer(32, stride=1) |
|
self.layer2 = self._make_layer(64, stride=2) |
|
self.layer3 = self._make_layer(96, stride=2) |
|
|
|
self.dropout = None |
|
if dropout > 0: |
|
self.dropout = nn.Dropout2d(p=dropout) |
|
|
|
self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): |
|
if m.weight is not None: |
|
nn.init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, dim, stride=1): |
|
layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride) |
|
layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1) |
|
layers = (layer1, layer2) |
|
|
|
self.in_planes = dim |
|
return nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
is_list = isinstance(x, tuple) or isinstance(x, list) |
|
if is_list: |
|
batch_dim = x[0].shape[0] |
|
x = torch.cat(x, dim=0) |
|
|
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu1(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.conv2(x) |
|
|
|
if self.training and self.dropout is not None: |
|
x = self.dropout(x) |
|
|
|
if is_list: |
|
x = torch.split(x, [batch_dim, batch_dim], dim=0) |
|
|
|
return x |
|
|
|
class ResNetFPN(nn.Module): |
|
""" |
|
ResNet18, output resolution is 1/8. |
|
Each block has 2 layers. |
|
""" |
|
def __init__(self, args, input_dim=3, output_dim=256, ratio=1.0, norm_layer=nn.BatchNorm2d, init_weight=False): |
|
super().__init__() |
|
|
|
block = BasicBlock |
|
block_dims = args.block_dims |
|
initial_dim = args.initial_dim |
|
self.init_weight = init_weight |
|
self.input_dim = input_dim |
|
|
|
self.in_planes = initial_dim |
|
for i in range(len(block_dims)): |
|
block_dims[i] = int(block_dims[i] * ratio) |
|
|
|
self.conv1 = nn.Conv2d(input_dim, initial_dim, kernel_size=7, stride=2, padding=3) |
|
self.bn1 = norm_layer(initial_dim) |
|
self.relu = nn.ReLU(inplace=True) |
|
if args.pretrain == 'resnet34': |
|
n_block = [3, 4, 6] |
|
elif args.pretrain == 'resnet18': |
|
n_block = [2, 2, 2] |
|
else: |
|
raise NotImplementedError |
|
self.layer1 = self._make_layer(block, block_dims[0], stride=1, norm_layer=norm_layer, num=n_block[0]) |
|
self.layer2 = self._make_layer(block, block_dims[1], stride=2, norm_layer=norm_layer, num=n_block[1]) |
|
self.layer3 = self._make_layer(block, block_dims[2], stride=2, norm_layer=norm_layer, num=n_block[2]) |
|
self.final_conv = conv1x1(block_dims[2], output_dim) |
|
self._init_weights(args) |
|
|
|
def _init_weights(self, args): |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): |
|
if m.weight is not None: |
|
nn.init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
if self.init_weight: |
|
from torchvision.models import resnet18, ResNet18_Weights, resnet34, ResNet34_Weights |
|
if args.pretrain == 'resnet18': |
|
pretrained_dict = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1).state_dict() |
|
else: |
|
pretrained_dict = resnet34(weights=ResNet34_Weights.IMAGENET1K_V1).state_dict() |
|
model_dict = self.state_dict() |
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} |
|
if self.input_dim == 6: |
|
for k, v in pretrained_dict.items(): |
|
if k == 'conv1.weight': |
|
pretrained_dict[k] = torch.cat((v, v), dim=1) |
|
model_dict.update(pretrained_dict) |
|
self.load_state_dict(model_dict, strict=False) |
|
|
|
|
|
def _make_layer(self, block, dim, stride=1, norm_layer=nn.BatchNorm2d, num=2): |
|
layers = [] |
|
layers.append(block(self.in_planes, dim, stride=stride, norm_layer=norm_layer)) |
|
for i in range(num - 1): |
|
layers.append(block(dim, dim, stride=1, norm_layer=norm_layer)) |
|
self.in_planes = dim |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
x = self.relu(self.bn1(self.conv1(x))) |
|
for i in range(len(self.layer1)): |
|
x = self.layer1[i](x) |
|
for i in range(len(self.layer2)): |
|
x = self.layer2[i](x) |
|
for i in range(len(self.layer3)): |
|
x = self.layer3[i](x) |
|
|
|
output = self.final_conv(x) |
|
return output |