|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
from collections import defaultdict |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from sam2.build_sam import build_sam2_video_predictor |
|
|
|
|
|
|
|
DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0" |
|
|
|
|
|
def load_ann_png(path): |
|
"""Load a PNG file as a mask and its palette.""" |
|
mask = Image.open(path) |
|
palette = mask.getpalette() |
|
mask = np.array(mask).astype(np.uint8) |
|
return mask, palette |
|
|
|
|
|
def save_ann_png(path, mask, palette): |
|
"""Save a mask as a PNG file with the given palette.""" |
|
assert mask.dtype == np.uint8 |
|
assert mask.ndim == 2 |
|
output_mask = Image.fromarray(mask) |
|
output_mask.putpalette(palette) |
|
output_mask.save(path) |
|
|
|
|
|
def get_per_obj_mask(mask): |
|
"""Split a mask into per-object masks.""" |
|
object_ids = np.unique(mask) |
|
object_ids = object_ids[object_ids > 0].tolist() |
|
per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids} |
|
return per_obj_mask |
|
|
|
|
|
def put_per_obj_mask(per_obj_mask, height, width): |
|
"""Combine per-object masks into a single mask.""" |
|
mask = np.zeros((height, width), dtype=np.uint8) |
|
object_ids = sorted(per_obj_mask)[::-1] |
|
for object_id in object_ids: |
|
object_mask = per_obj_mask[object_id] |
|
object_mask = object_mask.reshape(height, width) |
|
mask[object_mask] = object_id |
|
return mask |
|
|
|
|
|
def load_masks_from_dir( |
|
input_mask_dir, video_name, frame_name, per_obj_png_file, allow_missing=False |
|
): |
|
"""Load masks from a directory as a dict of per-object masks.""" |
|
if not per_obj_png_file: |
|
input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png") |
|
if allow_missing and not os.path.exists(input_mask_path): |
|
return {}, None |
|
input_mask, input_palette = load_ann_png(input_mask_path) |
|
per_obj_input_mask = get_per_obj_mask(input_mask) |
|
else: |
|
per_obj_input_mask = {} |
|
input_palette = None |
|
|
|
for object_name in os.listdir(os.path.join(input_mask_dir, video_name)): |
|
object_id = int(object_name) |
|
input_mask_path = os.path.join( |
|
input_mask_dir, video_name, object_name, f"{frame_name}.png" |
|
) |
|
if allow_missing and not os.path.exists(input_mask_path): |
|
continue |
|
input_mask, input_palette = load_ann_png(input_mask_path) |
|
per_obj_input_mask[object_id] = input_mask > 0 |
|
|
|
return per_obj_input_mask, input_palette |
|
|
|
|
|
def save_masks_to_dir( |
|
output_mask_dir, |
|
video_name, |
|
frame_name, |
|
per_obj_output_mask, |
|
height, |
|
width, |
|
per_obj_png_file, |
|
output_palette, |
|
): |
|
"""Save masks to a directory as PNG files.""" |
|
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) |
|
if not per_obj_png_file: |
|
output_mask = put_per_obj_mask(per_obj_output_mask, height, width) |
|
output_mask_path = os.path.join( |
|
output_mask_dir, video_name, f"{frame_name}.png" |
|
) |
|
save_ann_png(output_mask_path, output_mask, output_palette) |
|
else: |
|
for object_id, object_mask in per_obj_output_mask.items(): |
|
object_name = f"{object_id:03d}" |
|
os.makedirs( |
|
os.path.join(output_mask_dir, video_name, object_name), |
|
exist_ok=True, |
|
) |
|
output_mask = object_mask.reshape(height, width).astype(np.uint8) |
|
output_mask_path = os.path.join( |
|
output_mask_dir, video_name, object_name, f"{frame_name}.png" |
|
) |
|
save_ann_png(output_mask_path, output_mask, output_palette) |
|
|
|
|
|
@torch.inference_mode() |
|
@torch.autocast(device_type="cuda", dtype=torch.bfloat16) |
|
def vos_inference( |
|
predictor, |
|
base_video_dir, |
|
input_mask_dir, |
|
output_mask_dir, |
|
video_name, |
|
score_thresh=0.0, |
|
use_all_masks=False, |
|
per_obj_png_file=False, |
|
): |
|
"""Run VOS inference on a single video with the given predictor.""" |
|
|
|
video_dir = os.path.join(base_video_dir, video_name) |
|
frame_names = [ |
|
os.path.splitext(p)[0] |
|
for p in os.listdir(video_dir) |
|
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] |
|
] |
|
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) |
|
inference_state = predictor.init_state( |
|
video_path=video_dir, async_loading_frames=False |
|
) |
|
height = inference_state["video_height"] |
|
width = inference_state["video_width"] |
|
input_palette = None |
|
|
|
|
|
if not use_all_masks: |
|
|
|
input_frame_inds = [0] |
|
else: |
|
|
|
if not per_obj_png_file: |
|
input_frame_inds = [ |
|
idx |
|
for idx, name in enumerate(frame_names) |
|
if os.path.exists( |
|
os.path.join(input_mask_dir, video_name, f"{name}.png") |
|
) |
|
] |
|
else: |
|
input_frame_inds = [ |
|
idx |
|
for object_name in os.listdir(os.path.join(input_mask_dir, video_name)) |
|
for idx, name in enumerate(frame_names) |
|
if os.path.exists( |
|
os.path.join(input_mask_dir, video_name, object_name, f"{name}.png") |
|
) |
|
] |
|
|
|
if len(input_frame_inds) == 0: |
|
raise RuntimeError( |
|
f"In {video_name=}, got no input masks in {input_mask_dir=}. " |
|
"Please make sure the input masks are available in the correct format." |
|
) |
|
input_frame_inds = sorted(set(input_frame_inds)) |
|
|
|
|
|
object_ids_set = None |
|
for input_frame_idx in input_frame_inds: |
|
try: |
|
per_obj_input_mask, input_palette = load_masks_from_dir( |
|
input_mask_dir=input_mask_dir, |
|
video_name=video_name, |
|
frame_name=frame_names[input_frame_idx], |
|
per_obj_png_file=per_obj_png_file, |
|
) |
|
except FileNotFoundError as e: |
|
raise RuntimeError( |
|
f"In {video_name=}, failed to load input mask for frame {input_frame_idx=}. " |
|
"Please add the `--track_object_appearing_later_in_video` flag " |
|
"for VOS datasets that don't have all objects to track appearing " |
|
"in the first frame (such as LVOS or YouTube-VOS)." |
|
) from e |
|
|
|
if object_ids_set is None: |
|
object_ids_set = set(per_obj_input_mask) |
|
for object_id, object_mask in per_obj_input_mask.items(): |
|
|
|
if object_id not in object_ids_set: |
|
raise RuntimeError( |
|
f"In {video_name=}, got a new {object_id=} appearing only in a " |
|
f"later {input_frame_idx=} (but not appearing in the first frame). " |
|
"Please add the `--track_object_appearing_later_in_video` flag " |
|
"for VOS datasets that don't have all objects to track appearing " |
|
"in the first frame (such as LVOS or YouTube-VOS)." |
|
) |
|
predictor.add_new_mask( |
|
inference_state=inference_state, |
|
frame_idx=input_frame_idx, |
|
obj_id=object_id, |
|
mask=object_mask, |
|
) |
|
|
|
|
|
if object_ids_set is None or len(object_ids_set) == 0: |
|
raise RuntimeError( |
|
f"In {video_name=}, got no object ids on {input_frame_inds=}. " |
|
"Please add the `--track_object_appearing_later_in_video` flag " |
|
"for VOS datasets that don't have all objects to track appearing " |
|
"in the first frame (such as LVOS or YouTube-VOS)." |
|
) |
|
|
|
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) |
|
output_palette = input_palette or DAVIS_PALETTE |
|
video_segments = {} |
|
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video( |
|
inference_state |
|
): |
|
per_obj_output_mask = { |
|
out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy() |
|
for i, out_obj_id in enumerate(out_obj_ids) |
|
} |
|
video_segments[out_frame_idx] = per_obj_output_mask |
|
|
|
|
|
for out_frame_idx, per_obj_output_mask in video_segments.items(): |
|
save_masks_to_dir( |
|
output_mask_dir=output_mask_dir, |
|
video_name=video_name, |
|
frame_name=frame_names[out_frame_idx], |
|
per_obj_output_mask=per_obj_output_mask, |
|
height=height, |
|
width=width, |
|
per_obj_png_file=per_obj_png_file, |
|
output_palette=output_palette, |
|
) |
|
|
|
|
|
@torch.inference_mode() |
|
@torch.autocast(device_type="cuda", dtype=torch.bfloat16) |
|
def vos_separate_inference_per_object( |
|
predictor, |
|
base_video_dir, |
|
input_mask_dir, |
|
output_mask_dir, |
|
video_name, |
|
score_thresh=0.0, |
|
use_all_masks=False, |
|
per_obj_png_file=False, |
|
): |
|
""" |
|
Run VOS inference on a single video with the given predictor. |
|
|
|
Unlike `vos_inference`, this function run inference separately for each object |
|
in a video, which could be applied to datasets like LVOS or YouTube-VOS that |
|
don't have all objects to track appearing in the first frame (i.e. some objects |
|
might appear only later in the video). |
|
""" |
|
|
|
video_dir = os.path.join(base_video_dir, video_name) |
|
frame_names = [ |
|
os.path.splitext(p)[0] |
|
for p in os.listdir(video_dir) |
|
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] |
|
] |
|
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) |
|
inference_state = predictor.init_state( |
|
video_path=video_dir, async_loading_frames=False |
|
) |
|
height = inference_state["video_height"] |
|
width = inference_state["video_width"] |
|
input_palette = None |
|
|
|
|
|
inputs_per_object = defaultdict(dict) |
|
for idx, name in enumerate(frame_names): |
|
if per_obj_png_file or os.path.exists( |
|
os.path.join(input_mask_dir, video_name, f"{name}.png") |
|
): |
|
per_obj_input_mask, input_palette = load_masks_from_dir( |
|
input_mask_dir=input_mask_dir, |
|
video_name=video_name, |
|
frame_name=frame_names[idx], |
|
per_obj_png_file=per_obj_png_file, |
|
allow_missing=True, |
|
) |
|
for object_id, object_mask in per_obj_input_mask.items(): |
|
|
|
if not np.any(object_mask): |
|
continue |
|
|
|
if len(inputs_per_object[object_id]) > 0 and not use_all_masks: |
|
continue |
|
print(f"adding mask from frame {idx} as input for {object_id=}") |
|
inputs_per_object[object_id][idx] = object_mask |
|
|
|
|
|
object_ids = sorted(inputs_per_object) |
|
output_scores_per_object = defaultdict(dict) |
|
for object_id in object_ids: |
|
|
|
input_frame_inds = sorted(inputs_per_object[object_id]) |
|
predictor.reset_state(inference_state) |
|
for input_frame_idx in input_frame_inds: |
|
predictor.add_new_mask( |
|
inference_state=inference_state, |
|
frame_idx=input_frame_idx, |
|
obj_id=object_id, |
|
mask=inputs_per_object[object_id][input_frame_idx], |
|
) |
|
|
|
|
|
for out_frame_idx, _, out_mask_logits in predictor.propagate_in_video( |
|
inference_state, |
|
start_frame_idx=min(input_frame_inds), |
|
reverse=False, |
|
): |
|
obj_scores = out_mask_logits.cpu().numpy() |
|
output_scores_per_object[object_id][out_frame_idx] = obj_scores |
|
|
|
|
|
os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) |
|
output_palette = input_palette or DAVIS_PALETTE |
|
video_segments = {} |
|
for frame_idx in range(len(frame_names)): |
|
scores = torch.full( |
|
size=(len(object_ids), 1, height, width), |
|
fill_value=-1024.0, |
|
dtype=torch.float32, |
|
) |
|
for i, object_id in enumerate(object_ids): |
|
if frame_idx in output_scores_per_object[object_id]: |
|
scores[i] = torch.from_numpy( |
|
output_scores_per_object[object_id][frame_idx] |
|
) |
|
|
|
if not per_obj_png_file: |
|
scores = predictor._apply_non_overlapping_constraints(scores) |
|
per_obj_output_mask = { |
|
object_id: (scores[i] > score_thresh).cpu().numpy() |
|
for i, object_id in enumerate(object_ids) |
|
} |
|
video_segments[frame_idx] = per_obj_output_mask |
|
|
|
|
|
for frame_idx, per_obj_output_mask in video_segments.items(): |
|
save_masks_to_dir( |
|
output_mask_dir=output_mask_dir, |
|
video_name=video_name, |
|
frame_name=frame_names[frame_idx], |
|
per_obj_output_mask=per_obj_output_mask, |
|
height=height, |
|
width=width, |
|
per_obj_png_file=per_obj_png_file, |
|
output_palette=output_palette, |
|
) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--sam2_cfg", |
|
type=str, |
|
default="configs/sam2.1/sam2.1_hiera_b+.yaml", |
|
help="SAM 2 model configuration file", |
|
) |
|
parser.add_argument( |
|
"--sam2_checkpoint", |
|
type=str, |
|
default="./checkpoints/sam2.1_hiera_b+.pt", |
|
help="path to the SAM 2 model checkpoint", |
|
) |
|
parser.add_argument( |
|
"--base_video_dir", |
|
type=str, |
|
required=True, |
|
help="directory containing videos (as JPEG files) to run VOS prediction on", |
|
) |
|
parser.add_argument( |
|
"--input_mask_dir", |
|
type=str, |
|
required=True, |
|
help="directory containing input masks (as PNG files) of each video", |
|
) |
|
parser.add_argument( |
|
"--video_list_file", |
|
type=str, |
|
default=None, |
|
help="text file containing the list of video names to run VOS prediction on", |
|
) |
|
parser.add_argument( |
|
"--output_mask_dir", |
|
type=str, |
|
required=True, |
|
help="directory to save the output masks (as PNG files)", |
|
) |
|
parser.add_argument( |
|
"--score_thresh", |
|
type=float, |
|
default=0.0, |
|
help="threshold for the output mask logits (default: 0.0)", |
|
) |
|
parser.add_argument( |
|
"--use_all_masks", |
|
action="store_true", |
|
help="whether to use all available PNG files in input_mask_dir " |
|
"(default without this flag: just the first PNG file as input to the SAM 2 model; " |
|
"usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)", |
|
) |
|
parser.add_argument( |
|
"--per_obj_png_file", |
|
action="store_true", |
|
help="whether use separate per-object PNG files for input and output masks " |
|
"(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; " |
|
"note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)", |
|
) |
|
parser.add_argument( |
|
"--apply_postprocessing", |
|
action="store_true", |
|
help="whether to apply postprocessing (e.g. hole-filling) to the output masks " |
|
"(we don't apply such post-processing in the SAM 2 model evaluation)", |
|
) |
|
parser.add_argument( |
|
"--track_object_appearing_later_in_video", |
|
action="store_true", |
|
help="whether to track objects that appear later in the video (i.e. not on the first frame; " |
|
"some VOS datasets like LVOS or YouTube-VOS don't have all objects appearing in the first frame)", |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
hydra_overrides_extra = [ |
|
"++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true") |
|
] |
|
predictor = build_sam2_video_predictor( |
|
config_file=args.sam2_cfg, |
|
ckpt_path=args.sam2_checkpoint, |
|
apply_postprocessing=args.apply_postprocessing, |
|
hydra_overrides_extra=hydra_overrides_extra, |
|
) |
|
|
|
if args.use_all_masks: |
|
print("using all available masks in input_mask_dir as input to the SAM 2 model") |
|
else: |
|
print( |
|
"using only the first frame's mask in input_mask_dir as input to the SAM 2 model" |
|
) |
|
|
|
|
|
if args.video_list_file is not None: |
|
with open(args.video_list_file, "r") as f: |
|
video_names = [v.strip() for v in f.readlines()] |
|
else: |
|
video_names = [ |
|
p |
|
for p in os.listdir(args.base_video_dir) |
|
if os.path.isdir(os.path.join(args.base_video_dir, p)) |
|
] |
|
print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}") |
|
|
|
for n_video, video_name in enumerate(video_names): |
|
print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}") |
|
if not args.track_object_appearing_later_in_video: |
|
vos_inference( |
|
predictor=predictor, |
|
base_video_dir=args.base_video_dir, |
|
input_mask_dir=args.input_mask_dir, |
|
output_mask_dir=args.output_mask_dir, |
|
video_name=video_name, |
|
score_thresh=args.score_thresh, |
|
use_all_masks=args.use_all_masks, |
|
per_obj_png_file=args.per_obj_png_file, |
|
) |
|
else: |
|
vos_separate_inference_per_object( |
|
predictor=predictor, |
|
base_video_dir=args.base_video_dir, |
|
input_mask_dir=args.input_mask_dir, |
|
output_mask_dir=args.output_mask_dir, |
|
video_name=video_name, |
|
score_thresh=args.score_thresh, |
|
use_all_masks=args.use_all_masks, |
|
per_obj_png_file=args.per_obj_png_file, |
|
) |
|
|
|
print( |
|
f"completed VOS prediction on {len(video_names)} videos -- " |
|
f"output masks saved to {args.output_mask_dir}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|