cyun9286's picture
Add application file
f53b39e
raw
history blame
5.19 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch
import math
from torch.nn import Module, Dropout
### Gradient Clipping and Zeroing Operations ###
GRAD_CLIP = 0.1
class GradClip(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad_x):
grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x)
return grad_x.clamp(min=-0.01, max=0.01)
class GradientClip(nn.Module):
def __init__(self):
super(GradientClip, self).__init__()
def forward(self, x):
return GradClip.apply(x)
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvNextBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, output_dim, layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * output_dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * output_dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.final = nn.Conv2d(dim, output_dim, kernel_size=1, padding=0)
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = self.final(input + x)
return x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution without padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1)
class BasicBlock(nn.Module):
def __init__(self, in_planes, planes, stride=1, norm_layer=nn.BatchNorm2d):
super().__init__()
# self.sparse = sparse
self.conv1 = conv3x3(in_planes, planes, stride)
self.conv2 = conv3x3(planes, planes)
self.bn1 = norm_layer(planes)
self.bn2 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
if stride == 1 and in_planes == planes:
self.downsample = None
else:
self.bn3 = norm_layer(planes)
self.downsample = nn.Sequential(
conv1x1(in_planes, planes, stride=stride),
self.bn3
)
def forward(self, x):
y = x
y = self.relu(self.bn1(self.conv1(y)))
y = self.relu(self.bn2(self.conv2(y)))
if self.downsample is not None:
x = self.downsample(x)
return self.relu(x+y)