|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import torch |
|
import math |
|
from torch.nn import Module, Dropout |
|
|
|
|
|
|
|
GRAD_CLIP = 0.1 |
|
|
|
class GradClip(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x): |
|
return x |
|
|
|
@staticmethod |
|
def backward(ctx, grad_x): |
|
grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x) |
|
return grad_x.clamp(min=-0.01, max=0.01) |
|
|
|
class GradientClip(nn.Module): |
|
def __init__(self): |
|
super(GradientClip, self).__init__() |
|
|
|
def forward(self, x): |
|
return GradClip.apply(x) |
|
|
|
def _make_divisible(v, divisor, min_value=None): |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
class ConvNextBlock(nn.Module): |
|
r""" ConvNeXt Block. There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
""" |
|
def __init__(self, dim, output_dim, layer_scale_init_value=1e-6): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) |
|
self.norm = LayerNorm(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear(dim, 4 * output_dim) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(4 * output_dim, dim) |
|
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), |
|
requires_grad=True) if layer_scale_init_value > 0 else None |
|
self.final = nn.Conv2d(dim, output_dim, kernel_size=1, padding=0) |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 3, 1, 2) |
|
x = self.final(input + x) |
|
return x |
|
|
|
class LayerNorm(nn.Module): |
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape, ) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution without padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1) |
|
|
|
class BasicBlock(nn.Module): |
|
def __init__(self, in_planes, planes, stride=1, norm_layer=nn.BatchNorm2d): |
|
super().__init__() |
|
|
|
|
|
self.conv1 = conv3x3(in_planes, planes, stride) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn1 = norm_layer(planes) |
|
self.bn2 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
if stride == 1 and in_planes == planes: |
|
self.downsample = None |
|
else: |
|
self.bn3 = norm_layer(planes) |
|
self.downsample = nn.Sequential( |
|
conv1x1(in_planes, planes, stride=stride), |
|
self.bn3 |
|
) |
|
|
|
def forward(self, x): |
|
y = x |
|
y = self.relu(self.bn1(self.conv1(y))) |
|
y = self.relu(self.bn2(self.conv2(y))) |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return self.relu(x+y) |