|
## SAM 2 toolkits |
|
|
|
This directory provides toolkits for additional SAM 2 use cases. |
|
|
|
### Semi-supervised VOS inference |
|
|
|
The `vos_inference.py` script can be used to generate predictions for semi-supervised video object segmentation (VOS) evaluation on datasets such as [DAVIS](https://davischallenge.org/index.html), [MOSE](https://henghuiding.github.io/MOSE/) or the SA-V dataset. |
|
|
|
After installing SAM 2 and its dependencies, it can be used as follows ([DAVIS 2017 dataset](https://davischallenge.org/davis2017/code.html) as an example). This script saves the prediction PNG files to the `--output_mask_dir`. |
|
```bash |
|
python ./tools/vos_inference.py \ |
|
--sam2_cfg configs/sam2.1/sam2.1_hiera_b+.yaml \ |
|
--sam2_checkpoint ./checkpoints/sam2.1_hiera_base_plus.pt \ |
|
--base_video_dir /path-to-davis-2017/JPEGImages/480p \ |
|
--input_mask_dir /path-to-davis-2017/Annotations/480p \ |
|
--video_list_file /path-to-davis-2017/ImageSets/2017/val.txt \ |
|
--output_mask_dir ./outputs/davis_2017_pred_pngs |
|
``` |
|
(replace `/path-to-davis-2017` with the path to DAVIS 2017 dataset) |
|
|
|
To evaluate on the SA-V dataset with per-object PNG files for the object masks, we need to **add the `--per_obj_png_file` flag** as follows (using SA-V val as an example). This script will also save per-object PNG files for the output masks under the `--per_obj_png_file` flag. |
|
```bash |
|
python ./tools/vos_inference.py \ |
|
--sam2_cfg configs/sam2.1/sam2.1_hiera_b+.yaml \ |
|
--sam2_checkpoint ./checkpoints/sam2.1_hiera_base_plus.pt \ |
|
--base_video_dir /path-to-sav-val/JPEGImages_24fps \ |
|
--input_mask_dir /path-to-sav-val/Annotations_6fps \ |
|
--video_list_file /path-to-sav-val/sav_val.txt \ |
|
--per_obj_png_file \ |
|
--output_mask_dir ./outputs/sav_val_pred_pngs |
|
``` |
|
(replace `/path-to-sav-val` with the path to SA-V val) |
|
|
|
Then, we can use the evaluation tools or servers for each dataset to get the performance of the prediction PNG files above. |
|
|
|
Note: by default, the `vos_inference.py` script above assumes that all objects to track already appear on frame 0 in each video (as is the case in DAVIS, MOSE or SA-V). **For VOS datasets that don't have all objects to track appearing in the first frame (such as LVOS or YouTube-VOS), please add the `--track_object_appearing_later_in_video` flag when using `vos_inference.py`**. |
|
|