Align3R / croco /stereoflow /datasets_stereo.py
cyun9286's picture
Add application file
f53b39e
raw
history blame
32.4 kB
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# Dataset structure for stereo
# --------------------------------------------------------
import sys, os
import os.path as osp
import pickle
import numpy as np
from PIL import Image
import json
import h5py
from glob import glob
import cv2
import torch
from torch.utils import data
from .augmentor import StereoAugmentor
dataset_to_root = {
'CREStereo': './data/stereoflow//crenet_stereo_trainset/stereo_trainset/crestereo/',
'SceneFlow': './data/stereoflow//SceneFlow/',
'ETH3DLowRes': './data/stereoflow/eth3d_lowres/',
'Booster': './data/stereoflow/booster_gt/',
'Middlebury2021': './data/stereoflow/middlebury/2021/data/',
'Middlebury2014': './data/stereoflow/middlebury/2014/',
'Middlebury2006': './data/stereoflow/middlebury/2006/',
'Middlebury2005': './data/stereoflow/middlebury/2005/train/',
'MiddleburyEval3': './data/stereoflow/middlebury/MiddEval3/',
'Spring': './data/stereoflow/spring/',
'Kitti15': './data/stereoflow/kitti-stereo-2015/',
'Kitti12': './data/stereoflow/kitti-stereo-2012/',
}
cache_dir = "./data/stereoflow/datasets_stereo_cache/"
in1k_mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
in1k_std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
def img_to_tensor(img):
img = torch.from_numpy(img).permute(2, 0, 1).float() / 255.
img = (img-in1k_mean)/in1k_std
return img
def disp_to_tensor(disp):
return torch.from_numpy(disp)[None,:,:]
class StereoDataset(data.Dataset):
def __init__(self, split, augmentor=False, crop_size=None, totensor=True):
self.split = split
if not augmentor: assert crop_size is None
if crop_size: assert augmentor
self.crop_size = crop_size
self.augmentor_str = augmentor
self.augmentor = StereoAugmentor(crop_size) if augmentor else None
self.totensor = totensor
self.rmul = 1 # keep track of rmul
self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time)
self._prepare_data()
self._load_or_build_cache()
def prepare_data(self):
"""
to be defined for each dataset
"""
raise NotImplementedError
def __len__(self):
return len(self.pairnames)
def __getitem__(self, index):
pairname = self.pairnames[index]
# get filenames
Limgname = self.pairname_to_Limgname(pairname)
Rimgname = self.pairname_to_Rimgname(pairname)
Ldispname = self.pairname_to_Ldispname(pairname) if self.pairname_to_Ldispname is not None else None
# load images and disparities
Limg = _read_img(Limgname)
Rimg = _read_img(Rimgname)
disp = self.load_disparity(Ldispname) if Ldispname is not None else None
# sanity check
if disp is not None: assert np.all(disp>0) or self.name=="Spring", (self.name, pairname, Ldispname)
# apply augmentations
if self.augmentor is not None:
Limg, Rimg, disp = self.augmentor(Limg, Rimg, disp, self.name)
if self.totensor:
Limg = img_to_tensor(Limg)
Rimg = img_to_tensor(Rimg)
if disp is None:
disp = torch.tensor([]) # to allow dataloader batching with default collate_gn
else:
disp = disp_to_tensor(disp)
return Limg, Rimg, disp, str(pairname)
def __rmul__(self, v):
self.rmul *= v
self.pairnames = v * self.pairnames
return self
def __str__(self):
return f'{self.__class__.__name__}_{self.split}'
def __repr__(self):
s = f'{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})'
if self.rmul==1:
s+=f'\n\tnum pairs: {len(self.pairnames)}'
else:
s+=f'\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})'
return s
def _set_root(self):
self.root = dataset_to_root[self.name]
assert os.path.isdir(self.root), f"could not find root directory for dataset {self.name}: {self.root}"
def _load_or_build_cache(self):
cache_file = osp.join(cache_dir, self.name+'.pkl')
if osp.isfile(cache_file):
with open(cache_file, 'rb') as fid:
self.pairnames = pickle.load(fid)[self.split]
else:
tosave = self._build_cache()
os.makedirs(cache_dir, exist_ok=True)
with open(cache_file, 'wb') as fid:
pickle.dump(tosave, fid)
self.pairnames = tosave[self.split]
class CREStereoDataset(StereoDataset):
def _prepare_data(self):
self.name = 'CREStereo'
self._set_root()
assert self.split in ['train']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_left.jpg')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'_right.jpg')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname+'_left.disp.png')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_crestereo_disp
def _build_cache(self):
allpairs = [s+'/'+f[:-len('_left.jpg')] for s in sorted(os.listdir(self.root)) for f in sorted(os.listdir(self.root+'/'+s)) if f.endswith('_left.jpg')]
assert len(allpairs)==200000, "incorrect parsing of pairs in CreStereo"
tosave = {'train': allpairs}
return tosave
class SceneFlowDataset(StereoDataset):
def _prepare_data(self):
self.name = "SceneFlow"
self._set_root()
assert self.split in ['train_finalpass','train_cleanpass','train_allpass','test_finalpass','test_cleanpass','test_allpass','test1of100_cleanpass','test1of100_finalpass']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/left/','/right/')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname).replace('/frames_finalpass/','/disparity/').replace('/frames_cleanpass/','/disparity/')[:-4]+'.pfm'
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_sceneflow_disp
def _build_cache(self):
trainpairs = []
# driving
pairs = sorted(glob(self.root+'Driving/frames_finalpass/*/*/*/left/*.png'))
pairs = list(map(lambda x: x[len(self.root):], pairs))
assert len(pairs) == 4400, "incorrect parsing of pairs in SceneFlow"
trainpairs += pairs
# monkaa
pairs = sorted(glob(self.root+'Monkaa/frames_finalpass/*/left/*.png'))
pairs = list(map(lambda x: x[len(self.root):], pairs))
assert len(pairs) == 8664, "incorrect parsing of pairs in SceneFlow"
trainpairs += pairs
# flyingthings
pairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TRAIN/*/*/left/*.png'))
pairs = list(map(lambda x: x[len(self.root):], pairs))
assert len(pairs) == 22390, "incorrect parsing of pairs in SceneFlow"
trainpairs += pairs
assert len(trainpairs) == 35454, "incorrect parsing of pairs in SceneFlow"
testpairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TEST/*/*/left/*.png'))
testpairs = list(map(lambda x: x[len(self.root):], testpairs))
assert len(testpairs) == 4370, "incorrect parsing of pairs in SceneFlow"
test1of100pairs = testpairs[::100]
assert len(test1of100pairs) == 44, "incorrect parsing of pairs in SceneFlow"
# all
tosave = {'train_finalpass': trainpairs,
'train_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), trainpairs)),
'test_finalpass': testpairs,
'test_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), testpairs)),
'test1of100_finalpass': test1of100pairs,
'test1of100_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), test1of100pairs)),
}
tosave['train_allpass'] = tosave['train_finalpass']+tosave['train_cleanpass']
tosave['test_allpass'] = tosave['test_finalpass']+tosave['test_cleanpass']
return tosave
class Md21Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2021"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/im0','/im1'))
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp0.pfm')
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_middlebury_disp
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
#trainpairs += [s+'/im0.png'] # we should remove it, it is included as such in other lightings
trainpairs += [s+'/ambient/'+b+'/'+a for b in sorted(os.listdir(osp.join(self.root,s,'ambient'))) for a in sorted(os.listdir(osp.join(self.root,s,'ambient',b))) if a.startswith('im0')]
assert len(trainpairs)==355
subtrainpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[:-2])]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[-2:])]
assert len(subtrainpairs)==335 and len(subvalpairs)==20, "incorrect parsing of pairs in Middlebury 2021"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class Md14Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2014"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'im0.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'disp0.pfm')
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_middlebury_disp
self.has_constant_resolution = False
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
trainpairs += [s+'/im1.png',s+'/im1E.png',s+'/im1L.png']
assert len(trainpairs)==138
valseqs = ['Umbrella-imperfect','Vintage-perfect']
assert all(s in seqs for s in valseqs)
subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
assert len(subtrainpairs)==132 and len(subvalpairs)==6, "incorrect parsing of pairs in Middlebury 2014"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class Md06Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2006"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png')
self.load_disparity = _read_middlebury20052006_disp
self.has_constant_resolution = False
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
for i in ['Illum1','Illum2','Illum3']:
for e in ['Exp0','Exp1','Exp2']:
trainpairs.append(osp.join(s,i,e,'view1.png'))
assert len(trainpairs)==189
valseqs = ['Rocks1','Wood2']
assert all(s in seqs for s in valseqs)
subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
assert len(subtrainpairs)==171 and len(subvalpairs)==18, "incorrect parsing of pairs in Middlebury 2006"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class Md05Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Middlebury2005"
self._set_root()
assert self.split in ['train','subtrain','subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png')
self.pairname_to_str = lambda pairname: pairname[:-4]
self.load_disparity = _read_middlebury20052006_disp
def _build_cache(self):
seqs = sorted(os.listdir(self.root))
trainpairs = []
for s in seqs:
for i in ['Illum1','Illum2','Illum3']:
for e in ['Exp0','Exp1','Exp2']:
trainpairs.append(osp.join(s,i,e,'view1.png'))
assert len(trainpairs)==54, "incorrect parsing of pairs in Middlebury 2005"
valseqs = ['Reindeer']
assert all(s in seqs for s in valseqs)
subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
assert len(subtrainpairs)==45 and len(subvalpairs)==9, "incorrect parsing of pairs in Middlebury 2005"
tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
class MdEval3Dataset(StereoDataset):
def _prepare_data(self):
self.name = "MiddleburyEval3"
self._set_root()
assert self.split in [s+'_'+r for s in ['train','subtrain','subval','test','all'] for r in ['full','half','quarter']]
if self.split.endswith('_full'):
self.root = self.root.replace('/MiddEval3','/MiddEval3_F')
elif self.split.endswith('_half'):
self.root = self.root.replace('/MiddEval3','/MiddEval3_H')
else:
assert self.split.endswith('_quarter')
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png')
self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname, 'disp0GT.pfm')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_middlebury_disp
# for submission only
self.submission_methodname = "CroCo-Stereo"
self.submission_sresolution = 'F' if self.split.endswith('_full') else ('H' if self.split.endswith('_half') else 'Q')
def _build_cache(self):
trainpairs = ['train/'+s for s in sorted(os.listdir(self.root+'train/'))]
testpairs = ['test/'+s for s in sorted(os.listdir(self.root+'test/'))]
subvalpairs = trainpairs[-1:]
subtrainpairs = trainpairs[:-1]
allpairs = trainpairs+testpairs
assert len(trainpairs)==15 and len(testpairs)==15 and len(subvalpairs)==1 and len(subtrainpairs)==14 and len(allpairs)==30, "incorrect parsing of pairs in Middlebury Eval v3"
tosave = {}
for r in ['full','half','quarter']:
tosave.update(**{'train_'+r: trainpairs, 'subtrain_'+r: subtrainpairs, 'subval_'+r: subvalpairs, 'test_'+r: testpairs, 'all_'+r: allpairs})
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, pairname.split('/')[0].replace('train','training')+self.submission_sresolution, pairname.split('/')[1], 'disp0'+self.submission_methodname+'.pfm')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
writePFM(outfile, prediction)
timefile = os.path.join( os.path.dirname(outfile), "time"+self.submission_methodname+'.txt')
with open(timefile, 'w') as fid:
fid.write(str(time))
def finalize_submission(self, outdir):
cmd = f'cd {outdir}/; zip -r "{self.submission_methodname}.zip" .'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/{self.submission_methodname}.zip')
class ETH3DLowResDataset(StereoDataset):
def _prepare_data(self):
self.name = "ETH3DLowRes"
self._set_root()
assert self.split in ['train','test','subtrain','subval','all']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png')
self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: None if pairname.startswith('test/') else osp.join(self.root, pairname.replace('train/','train_gt/'), 'disp0GT.pfm')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_eth3d_disp
self.has_constant_resolution = False
def _build_cache(self):
trainpairs = ['train/' + s for s in sorted(os.listdir(self.root+'train/'))]
testpairs = ['test/' + s for s in sorted(os.listdir(self.root+'test/'))]
assert len(trainpairs) == 27 and len(testpairs) == 20, "incorrect parsing of pairs in ETH3D Low Res"
subvalpairs = ['train/delivery_area_3s','train/electro_3l','train/playground_3l']
assert all(p in trainpairs for p in subvalpairs)
subtrainpairs = [p for p in trainpairs if not p in subvalpairs]
assert len(subvalpairs)==3 and len(subtrainpairs)==24, "incorrect parsing of pairs in ETH3D Low Res"
tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs, 'all': trainpairs+testpairs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, 'low_res_two_view', pairname.split('/')[1]+'.pfm')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
writePFM(outfile, prediction)
timefile = outfile[:-4]+'.txt'
with open(timefile, 'w') as fid:
fid.write('runtime '+str(time))
def finalize_submission(self, outdir):
cmd = f'cd {outdir}/; zip -r "eth3d_low_res_two_view_results.zip" low_res_two_view'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/eth3d_low_res_two_view_results.zip')
class BoosterDataset(StereoDataset):
def _prepare_data(self):
self.name = "Booster"
self._set_root()
assert self.split in ['train_balanced','test_balanced','subtrain_balanced','subval_balanced'] # we use only the balanced version
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/camera_00/','/camera_02/')
self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), '../disp_00.npy') # same images with different colors, same gt per sequence
self.pairname_to_str = lambda pairname: pairname[:-4].replace('/camera_00/','/')
self.load_disparity = _read_booster_disp
def _build_cache(self):
trainseqs = sorted(os.listdir(self.root+'train/balanced'))
trainpairs = ['train/balanced/'+s+'/camera_00/'+imname for s in trainseqs for imname in sorted(os.listdir(self.root+'train/balanced/'+s+'/camera_00/'))]
testpairs = ['test/balanced/'+s+'/camera_00/'+imname for s in sorted(os.listdir(self.root+'test/balanced')) for imname in sorted(os.listdir(self.root+'test/balanced/'+s+'/camera_00/'))]
assert len(trainpairs) == 228 and len(testpairs) == 191
subtrainpairs = [p for p in trainpairs if any(s in p for s in trainseqs[:-2])]
subvalpairs = [p for p in trainpairs if any(s in p for s in trainseqs[-2:])]
# warning: if we do validation split, we should split scenes!!!
tosave = {'train_balanced': trainpairs, 'test_balanced': testpairs, 'subtrain_balanced': subtrainpairs, 'subval_balanced': subvalpairs,}
return tosave
class SpringDataset(StereoDataset):
def _prepare_data(self):
self.name = "Spring"
self._set_root()
assert self.split in ['train', 'test', 'subtrain', 'subval']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'.png').replace('frame_right','<frame_right>').replace('frame_left','frame_right').replace('<frame_right>','frame_left')
self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right')
self.pairname_to_str = lambda pairname: pairname
self.load_disparity = _read_hdf5_disp
def _build_cache(self):
trainseqs = sorted(os.listdir( osp.join(self.root,'train')))
trainpairs = [osp.join('train',s,'frame_left',f[:-4]) for s in trainseqs for f in sorted(os.listdir(osp.join(self.root,'train',s,'frame_left')))]
testseqs = sorted(os.listdir( osp.join(self.root,'test')))
testpairs = [osp.join('test',s,'frame_left',f[:-4]) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,'frame_left')))]
testpairs += [p.replace('frame_left','frame_right') for p in testpairs]
"""maxnorm = {'0001': 32.88, '0002': 228.5, '0004': 298.2, '0005': 142.5, '0006': 113.6, '0007': 27.3, '0008': 554.5, '0009': 155.6, '0010': 126.1, '0011': 87.6, '0012': 303.2, '0013': 24.14, '0014': 82.56, '0015': 98.44, '0016': 156.9, '0017': 28.17, '0018': 21.03, '0020': 178.0, '0021': 58.06, '0022': 354.2, '0023': 8.79, '0024': 97.06, '0025': 55.16, '0026': 91.9, '0027': 156.6, '0030': 200.4, '0032': 58.66, '0033': 373.5, '0036': 149.4, '0037': 5.625, '0038': 37.0, '0039': 12.2, '0041': 453.5, '0043': 457.0, '0044': 379.5, '0045': 161.8, '0047': 105.44} # => let'use 0041"""
subtrainpairs = [p for p in trainpairs if p.split('/')[1]!='0041']
subvalpairs = [p for p in trainpairs if p.split('/')[1]=='0041']
assert len(trainpairs)==5000 and len(testpairs)==2000 and len(subtrainpairs)==4904 and len(subvalpairs)==96, "incorrect parsing of pairs in Spring"
tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
writeDsp5File(prediction, outfile)
def finalize_submission(self, outdir):
assert self.split=='test'
exe = "{self.root}/disp1_subsampling"
if os.path.isfile(exe):
cmd = f'cd "{outdir}/test"; {exe} .'
print(cmd)
os.system(cmd)
else:
print('Could not find disp1_subsampling executable for submission.')
print('Please download it and run:')
print(f'cd "{outdir}/test"; <disp1_subsampling_exe> .')
class Kitti12Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Kitti12"
self._set_root()
assert self.split in ['train','test']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/colored_1/')+'_10.png')
self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/disp_occ/')+'_10.png')
self.pairname_to_str = lambda pairname: pairname.replace('/colored_0/','/')
self.load_disparity = _read_kitti_disp
def _build_cache(self):
trainseqs = ["training/colored_0/%06d"%(i) for i in range(194)]
testseqs = ["testing/colored_0/%06d"%(i) for i in range(195)]
assert len(trainseqs)==194 and len(testseqs)==195, "incorrect parsing of pairs in Kitti12"
tosave = {'train': trainseqs, 'test': testseqs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, pairname.split('/')[-1]+'_10.png')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
img = (prediction * 256).astype('uint16')
Image.fromarray(img).save(outfile)
def finalize_submission(self, outdir):
assert self.split=='test'
cmd = f'cd {outdir}/; zip -r "kitti12_results.zip" .'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/kitti12_results.zip')
class Kitti15Dataset(StereoDataset):
def _prepare_data(self):
self.name = "Kitti15"
self._set_root()
assert self.split in ['train','subtrain','subval','test']
self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png')
self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/image_3/')+'_10.png')
self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/disp_occ_0/')+'_10.png')
self.pairname_to_str = lambda pairname: pairname.replace('/image_2/','/')
self.load_disparity = _read_kitti_disp
def _build_cache(self):
trainseqs = ["training/image_2/%06d"%(i) for i in range(200)]
subtrainseqs = trainseqs[:-5]
subvalseqs = trainseqs[-5:]
testseqs = ["testing/image_2/%06d"%(i) for i in range(200)]
assert len(trainseqs)==200 and len(subtrainseqs)==195 and len(subvalseqs)==5 and len(testseqs)==200, "incorrect parsing of pairs in Kitti15"
tosave = {'train': trainseqs, 'subtrain': subtrainseqs, 'subval': subvalseqs, 'test': testseqs}
return tosave
def submission_save_pairname(self, pairname, prediction, outdir, time):
assert prediction.ndim==2
assert prediction.dtype==np.float32
outfile = os.path.join(outdir, 'disp_0', pairname.split('/')[-1]+'_10.png')
os.makedirs( os.path.dirname(outfile), exist_ok=True)
img = (prediction * 256).astype('uint16')
Image.fromarray(img).save(outfile)
def finalize_submission(self, outdir):
assert self.split=='test'
cmd = f'cd {outdir}/; zip -r "kitti15_results.zip" disp_0'
print(cmd)
os.system(cmd)
print(f'Done. Submission file at {outdir}/kitti15_results.zip')
### auxiliary functions
def _read_img(filename):
# convert to RGB for scene flow finalpass data
img = np.asarray(Image.open(filename).convert('RGB'))
return img
def _read_booster_disp(filename):
disp = np.load(filename)
disp[disp==0.0] = np.inf
return disp
def _read_png_disp(filename, coef=1.0):
disp = np.asarray(Image.open(filename))
disp = disp.astype(np.float32) / coef
disp[disp==0.0] = np.inf
return disp
def _read_pfm_disp(filename):
disp = np.ascontiguousarray(_read_pfm(filename)[0])
disp[disp<=0] = np.inf # eg /nfs/data/ffs-3d/datasets/middlebury/2014/Shopvac-imperfect/disp0.pfm
return disp
def _read_npy_disp(filename):
return np.load(filename)
def _read_crestereo_disp(filename): return _read_png_disp(filename, coef=32.0)
def _read_middlebury20052006_disp(filename): return _read_png_disp(filename, coef=1.0)
def _read_kitti_disp(filename): return _read_png_disp(filename, coef=256.0)
_read_sceneflow_disp = _read_pfm_disp
_read_eth3d_disp = _read_pfm_disp
_read_middlebury_disp = _read_pfm_disp
_read_carla_disp = _read_pfm_disp
_read_tartanair_disp = _read_npy_disp
def _read_hdf5_disp(filename):
disp = np.asarray(h5py.File(filename)['disparity'])
disp[np.isnan(disp)] = np.inf # make invalid values as +inf
#disp[disp==0.0] = np.inf # make invalid values as +inf
return disp.astype(np.float32)
import re
def _read_pfm(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == 'PF':
color = True
elif header.decode("ascii") == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def writePFM(file, image, scale=1):
file = open(file, 'wb')
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n'.encode())
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n'.encode() % scale)
image.tofile(file)
def writeDsp5File(disp, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)
# disp visualization
def vis_disparity(disp, m=None, M=None):
if m is None: m = disp.min()
if M is None: M = disp.max()
disp_vis = (disp - m) / (M-m) * 255.0
disp_vis = disp_vis.astype("uint8")
disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO)
return disp_vis
# dataset getter
def get_train_dataset_stereo(dataset_str, augmentor=True, crop_size=None):
dataset_str = dataset_str.replace('(','Dataset(')
if augmentor:
dataset_str = dataset_str.replace(')',', augmentor=True)')
if crop_size is not None:
dataset_str = dataset_str.replace(')',', crop_size={:s})'.format(str(crop_size)))
return eval(dataset_str)
def get_test_datasets_stereo(dataset_str):
dataset_str = dataset_str.replace('(','Dataset(')
return [eval(s) for s in dataset_str.split('+')]