Spaces:
Runtime error
Runtime error
File size: 2,288 Bytes
c20f071 44c8341 bdac097 44c8341 5e62770 11a696d 0fbae15 06b7537 0fbae15 cb13d0d 0fbae15 06b7537 0fbae15 44c8341 8b25912 44c8341 8b25912 44c8341 f1fe251 44c8341 0fbae15 44c8341 0fbae15 7a972f8 cb13d0d 44c8341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import os
os.system("pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu")
os.system("pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.12.0+cpu.html")
import gradio as gr
from glycowork.ml.processing import dataset_to_dataloader
import numpy as np
import torch
from glycowork.glycan_data.loader import lib
def fn(class_list):
def f(glycan, model):
if model == "No data augmentation":
model = torch.load("model1.pt", map_location=torch.device('cpu'))
model.eval()
elif model == "Ensemble":
model = torch.load("model3.pt", map_location=torch.device('cpu'))
model.eval()
else:
model = torch.load("model2.pt", map_location=torch.device('cpu'))
model.eval()
glycan = [glycan]
label = [0]
data = next(iter(dataset_to_dataloader(glycan, label, batch_size=1)))
device = "cpu"
if torch.cuda.is_available():
device = "cuda:0"
x = data.labels
edge_index = data.edge_index
batch = data.batch
x = x.to(device)
edge_index = edge_index.to(device)
batch = batch.to(device)
pred = model(x,edge_index, batch).cpu().detach().numpy()[0]
pred = np.exp(pred)/sum(np.exp(pred)) # Softmax
pred = [float(x) for x in pred]
pred = {class_list[i]:pred[i] for i in range(15)}
return pred
return f
class_list=['Amoebozoa', 'Animalia', 'Bacteria', 'Bamfordvirae', 'Chromista', 'Euryarchaeota', 'Excavata', 'Fungi', 'Heunggongvirae',
'Orthornavirae', 'Pararnavirae', 'Plantae', 'Proteoarchaeota', 'Protista', 'Riboviria']
f = fn(class_list)
demo = gr.Interface(
fn=f,
inputs=[gr.Textbox(label="Glycan sequence"), gr.Radio(label="Model",choices=["No data augmentation", "Random node deletion"])],
outputs=[gr.Label(num_top_classes=15, label="Prediction")],
allow_flagging=False,
title="SweetNet demo",
examples=[["GlcOSN(a1-4)GlcA(b1-4)GlcOSN(a1-4)GlcAOS(b1-4)GlcOSN(a1-4)GlcOSN", "No data augmentation"],
["Man(a1-2)Man(a1-3)[Man(a1-3)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc", "Random node deletion"],
["Man(a1-2)Man(a1-3)[Man(a1-6)]Man(a1-6)[Man(a1-2)Man(a1-2)Man(a1-3)]Man(b1-4)GlcNAc", "Ensemble"]]
)
demo.launch(debug=True) |