Spaces:
Runtime error
Runtime error
File size: 25,075 Bytes
640a27b f71eb42 0002379 fc73e59 a24b16a fc73e59 50b9662 500d414 506badf 0002379 50b9662 bf1e262 50b9662 bf1e262 6067469 bf1e262 5349660 506badf 2688a68 506badf 50b9662 5349660 843b14b 88c9af4 7c89716 f71eb42 f0cf9b0 7c89716 f0cf9b0 a24b16a 5349660 506badf f0cf9b0 5349660 f0cf9b0 5349660 ac5ee04 5349660 0166058 bf1e262 0166058 0002379 50b9662 6dc9635 d8ffb68 0002379 6dc9635 50b9662 5349660 0166058 5349660 0166058 843b14b 5349660 f0cf9b0 5349660 ac5ee04 843b14b f0cf9b0 5349660 0002379 bf1e262 5349660 98bb9c3 ab11bdd 98bb9c3 5349660 98bb9c3 5349660 bf1e262 5349660 94be4c7 6067469 50b9662 6067469 5349660 94be4c7 c8aa68b 94be4c7 c8aa68b fc73e59 50b9662 bf1e262 50b9662 5349660 81ccbca 5349660 6067469 50b9662 6067469 5349660 d8ffb68 94be4c7 d8ffb68 c40aefb d8ffb68 c8aa68b d8ffb68 c8aa68b 50b9662 d8ffb68 5349660 0002379 81ccbca d8ffb68 0002379 5349660 6067469 c40aefb 6067469 0002379 bf1e262 5349660 fc73e59 94be4c7 6067469 6dc9635 50b9662 5349660 ab11bdd 5349660 50b9662 6dc9635 6067469 d8ffb68 c40aefb d8ffb68 843b14b c40aefb 6067469 c40aefb bf1e262 c40aefb 50b9662 6dc9635 6067469 bf1e262 ab11bdd 6dc9635 50b9662 bf1e262 50b9662 88c9af4 81ccbca 7c89716 bf1e262 ab11bdd a24b16a 5349660 843b14b a24b16a 5349660 a24b16a 94be4c7 bf1e262 94be4c7 a24b16a bf1e262 6dc9635 50b9662 fc73e59 6067469 6dc9635 bf1e262 6067469 50b9662 6dc9635 50b9662 fc73e59 6067469 a24b16a 81ccbca a24b16a 50b9662 a24b16a ab11bdd 50b9662 ab11bdd fc73e59 a24b16a d8ffb68 ab11bdd 50b9662 ab11bdd d8ffb68 ab11bdd c8aa68b ab11bdd 50b9662 c40aefb d8ffb68 a24b16a d8ffb68 c19b710 7c89716 81ccbca a24b16a bf1e262 0002379 7c89716 843b14b d8ffb68 843b14b 0002379 d8ffb68 843b14b 7c89716 843b14b f71eb42 7c89716 a24b16a 0002379 d8ffb68 a24b16a 7c89716 a24b16a 843b14b 7c89716 f71eb42 843b14b f0cf9b0 843b14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import gradio as gr
import torch
import os
from diffusers.utils import is_xformers_available
from finetuning import FineTunedModel
from StableDiffuser import StableDiffuser
from memory_efficiency import MemoryEfficiencyWrapper
from train import train, training_should_cancel
import os
model_map = {}
model_names_list = []
def populate_global_model_map():
global model_map
global model_names_list
for model_file in os.listdir('models'):
path = 'models/' + model_file
if any([existing_path == path for existing_path in model_map.values()]):
continue
model_map[model_file] = path
model_names_list.clear()
model_names_list.extend(model_map.keys())
populate_global_model_map()
ORIGINAL_SPACE_ID = 'baulab/Erasing-Concepts-In-Diffusion'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## Attention - Training using the ESD-u method does not work in this shared UI. You can either duplicate and use it with a gpu with at least 40GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
# work around Gradio's weird threading
class Demo:
def __init__(self) -> None:
self.training = False
self.generating = False
with gr.Blocks() as demo:
self.layout()
demo.queue(concurrency_count=5).launch()
def layout(self):
with gr.Row():
if SPACE_ID == ORIGINAL_SPACE_ID:
self.warning = gr.Markdown(SHARED_UI_WARNING)
with gr.Row():
with gr.Tab("Test") as inference_column:
with gr.Row():
self.explain_infr = gr.Markdown(interactive=False,
value='This is a demo of [Erasing Concepts from Stable Diffusion](https://erasing.baulab.info/). To try out a model where a concept has been erased, select a model and enter any prompt. For example, if you select the model "Van Gogh" you can generate images for the prompt "A portrait in the style of Van Gogh" and compare the erased and unerased models. We have also provided several other pre-fine-tuned models with artistic styles and objects erased (Check out the "ESD Model" drop-down). You can also train and run your own custom models. Check out the "train" section for custom erasure of concepts.')
with gr.Row():
with gr.Column(scale=1):
self.base_repo_id_or_path_input_infr = gr.Text(
label="Base model",
value="CompVis/stable-diffusion-v1-4",
info="Path or huggingface repo id of the base model that this edit was done against"
)
self.prompt_input_infr = gr.Text(
placeholder="Enter prompt...",
label="Prompt",
info="Prompt to generate"
)
self.negative_prompt_input_infr = gr.Text(
label="Negative prompt"
)
self.seed_infr = gr.Number(
label="Seed",
value=42
)
with gr.Row():
self.img_width_infr = gr.Slider(
label="Image width",
minimum=256,
maximum=1024,
value=512,
step=64
)
self.img_height_infr = gr.Slider(
label="Image height",
minimum=256,
maximum=1024,
value=512,
step=64
)
with gr.Row():
self.model_dropdown = gr.Dropdown(
label="ESD Model",
choices= list(model_map.keys()),
value='Van Gogh',
interactive=True
)
self.model_reload_button = gr.Button(
value="π",
interactive=True
)
with gr.Column(scale=2):
self.infr_button = gr.Button(
value="Generate",
interactive=True
)
with gr.Row():
self.image_new = gr.Image(
label="ESD",
interactive=False
)
self.image_orig = gr.Image(
label="SD",
interactive=False
)
with gr.Tab("Train") as training_column:
with gr.Row():
self.explain_train= gr.Markdown(interactive=False,
value='In this part you can erase any concept from Stable Diffusion. Enter a prompt for the concept or style you want to erase, and select ESD-x if you want to focus erasure on prompts that mention the concept explicitly. [NOTE: ESD-u is currently unavailable in this space. But you can duplicate the space and run it on GPU with VRAM >40GB for enabling ESD-u]. With default settings, it takes about 15 minutes to fine-tune the model; then you can try inference above or download the weights. The training code used here is slightly different than the code tested in the original paper. Code and details are at [github link](https://github.com/rohitgandikota/erasing).')
with gr.Row():
with gr.Column(scale=3):
self.train_model_input = gr.Text(
label="Model to Edit",
value="CompVis/stable-diffusion-v1-4",
info="Path or huggingface repo id of the model to edit"
)
self.train_img_size_input = gr.Slider(
value=512,
step=64,
minimum=256,
maximum=1024,
label="Image Size",
info="Image size for training, should match the model's native image size"
)
self.train_prompts_input = gr.Text(
placeholder="Enter prompts, one per line",
label="Prompts to Erase",
info="Prompts corresponding to concepts to erase, one per line"
)
choices = ['ESD-x', 'ESD-self', 'ESD-u']
#if torch.cuda.get_device_properties(0).total_memory * 1e-9 >= 40 or is_xformers_available():
# choices.append('ESD-u')
self.train_method_input = gr.Dropdown(
choices=choices,
value='ESD-x',
label='Train Method',
info='Method of training. ESD-x uses the least VRAM, and you may get OOM errors with the other methods.'
)
self.neg_guidance_input = gr.Number(
value=1,
label="Negative Guidance",
info='Guidance of negative training used to train'
)
self.iterations_input = gr.Number(
value=150,
precision=0,
label="Iterations",
info='iterations used to train'
)
self.lr_input = gr.Number(
value=1e-5,
label="Learning Rate",
info='Learning rate used to train'
)
self.train_seed_input = gr.Number(
value=-1,
label="Seed",
info="Set to a fixed number for reproducible training results, or use -1 to pick randomly"
)
self.train_save_every_input = gr.Number(
value=-1,
label="Save Every N Steps",
info="If >0, save the model throughout training at the given step interval."
)
with gr.Column():
self.train_memory_options = gr.Markdown(interactive=False,
value='Performance and VRAM usage optimizations, may not work on all devices:')
with gr.Row():
self.train_use_adamw8bit_input = gr.Checkbox(label="8bit AdamW", value=True)
self.train_use_xformers_input = gr.Checkbox(label="xformers", value=True)
self.train_use_amp_input = gr.Checkbox(label="AMP", value=True)
self.train_use_gradient_checkpointing_input = gr.Checkbox(
label="Gradient checkpointing", value=False)
self.train_validation_prompts = gr.TextArea(
label="Validation Prompts",
placeholder="Probably, you want to put the \"Prompt to Erase\" in here as the first entry...",
value='',
info="Prompts for producing validation graphs, one per line."
)
self.train_sample_positive_prompts = gr.TextArea(
label="Sample Prompts",
value='',
info="Positive prompts for generating sample images, one per line."
)
self.train_sample_negative_prompts = gr.TextArea(
label="Sample Negative Prompts",
value='',
info="Negative prompts for use when generating sample images. One for each positive prompt, or leave empty for none."
)
with gr.Row():
self.train_sample_batch_size_input = gr.Slider(
value=1,
step=1,
minimum=1,
maximum=32,
label="Sample generation batch size",
info="Batch size for sample generation, larger needs more VRAM"
)
self.train_validate_every_n_steps = gr.Number(
label="Validate Every N Steps",
value=20,
info="Validation and sample generation will be run at intervals of this many steps"
)
with gr.Column(scale=1):
self.train_status = gr.Button(value='', variant='primary', label='Status', interactive=False)
self.train_button = gr.Button(
value="Train",
)
self.train_cancel_button = gr.Button(
value="Cancel Training"
)
self.download = gr.Files()
with gr.Tab("Export") as export_column:
with gr.Row():
self.explain_train= gr.Markdown(interactive=False,
value='Export a model to Diffusers format. Please enter the base model and select the editing weights.')
with gr.Row():
with gr.Column(scale=3):
self.base_repo_id_or_path_input_export = gr.Text(
label="Base model",
value="CompVis/stable-diffusion-v1-4",
info="Path or huggingface repo id of the base model that this edit was done against"
)
with gr.Row():
self.model_dropdown_export = gr.Dropdown(
label="ESD Model",
choices=list(model_map.keys()),
value='Van Gogh',
interactive=True
)
self.model_reload_button_export = gr.Button(
value="π",
interactive=True
)
self.save_path_input_export = gr.Text(
label="Output path",
placeholder="./exported_models/model_name",
info="Path to export the model to. A diffusers folder will be written to this location."
)
self.save_half_export = gr.Checkbox(
label="Save as fp16"
)
with gr.Column(scale=1):
self.export_status = gr.Button(
value='', variant='primary', label='Status', interactive=False)
self.export_button = gr.Button(
value="Export")
self.export_download = gr.Files()
self.infr_button.click(self.inference, inputs = [
self.prompt_input_infr,
self.negative_prompt_input_infr,
self.seed_infr,
self.img_width_infr,
self.img_height_infr,
self.model_dropdown,
self.base_repo_id_or_path_input_infr
],
outputs=[
self.image_new,
self.image_orig
]
)
self.model_reload_button.click(self.reload_models,
inputs=[self.model_dropdown, self.model_dropdown_export],
outputs=[self.model_dropdown, self.model_dropdown_export])
self.model_reload_button_export.click(self.reload_models,
inputs=[self.model_dropdown, self.model_dropdown_export],
outputs=[self.model_dropdown, self.model_dropdown_export])
train_event = self.train_button.click(self.train, inputs = [
self.train_model_input,
self.train_img_size_input,
self.train_prompts_input,
self.train_method_input,
self.neg_guidance_input,
self.iterations_input,
self.lr_input,
self.train_use_adamw8bit_input,
self.train_use_xformers_input,
self.train_use_amp_input,
self.train_use_gradient_checkpointing_input,
self.train_seed_input,
self.train_save_every_input,
self.train_sample_batch_size_input,
self.train_validation_prompts,
self.train_sample_positive_prompts,
self.train_sample_negative_prompts,
self.train_validate_every_n_steps
],
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
)
self.train_cancel_button.click(self.cancel_training,
inputs=[],
outputs=[self.train_cancel_button],
cancels=[train_event])
self.export_button.click(self.export, inputs = [
self.model_dropdown_export,
self.base_repo_id_or_path_input_export,
self.save_path_input_export,
self.save_half_export
],
outputs=[self.export_button, self.export_status]
)
def reload_models(self, model_dropdown, model_dropdown_export):
current_model_name = model_dropdown
current_model_name_export = model_dropdown_export
populate_global_model_map()
global model_names_list
return [gr.update(choices=model_names_list, value=current_model_name),
gr.update(choices=model_names_list, value=current_model_name_export)]
def cancel_training(self):
if self.training:
training_should_cancel.release()
print("cancellation requested...")
return [gr.update(value="Cancelling...", interactive=True)]
def train(self, repo_id_or_path, img_size, prompts, train_method, neg_guidance, iterations, lr,
use_adamw8bit=True, use_xformers=False, use_amp=False, use_gradient_checkpointing=False,
seed=-1, save_every=-1, sample_batch_size=1,
validation_prompts: str=None, sample_positive_prompts: str=None, sample_negative_prompts: str=None, validate_every_n_steps=-1,
pbar=gr.Progress(track_tqdm=True)):
"""
:param repo_id_or_path:
:param img_size:
:param prompts:
:param train_method:
:param neg_guidance:
:param iterations:
:param lr:
:param use_adamw8bit:
:param use_xformers:
:param use_amp:
:param use_gradient_checkpointing:
:param seed:
:param save_every:
:param validation_prompts: split on \n
:param sample_positive_prompts: split on \n
:param sample_negative_prompts: split on \n
:param validate_every_n_steps: split on \n
:param pbar:
:return:
"""
if self.training:
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
print(f"Training {repo_id_or_path} at {img_size} to remove '{prompts}'.")
print(f" {train_method}, negative guidance {neg_guidance}, lr {lr}, {iterations} iterations.")
print(f" {'β
' if use_gradient_checkpointing else 'β'} gradient checkpointing")
print(f" {'β
' if use_amp else 'β'} AMP")
print(f" {'β
' if use_xformers else 'β'} xformers")
print(f" {'β
' if use_adamw8bit else 'β'} 8-bit AdamW")
if train_method == 'ESD-x':
modules = ".*attn2$"
frozen = []
elif train_method == 'ESD-u':
modules = "unet$"
frozen = [".*attn2$", "unet.time_embedding$", "unet.conv_out$"]
elif train_method == 'ESD-self':
modules = ".*attn1$"
frozen = []
# build a save path, ensure it isn't in use
while True:
randn = torch.randint(1, 10000000, (1,)).item()
options = f'{"a8" if use_adamw8bit else ""}{"AM" if use_amp else ""}{"xf" if use_xformers else ""}{"gc" if use_gradient_checkpointing else ""}'
save_path = f"models/{prompts[0].lower().replace(' ', '')}_{train_method}_ng{neg_guidance}_lr{lr}_iter{iterations}_seed{seed}_{options}__{randn}.pt"
if not os.path.exists(save_path):
break
# repeat until a not-in-use path is found
prompts = [p for p in prompts.split('\n') if len(p)>0]
validation_prompts = [] if validation_prompts is None else [p for p in validation_prompts.split('\n') if len(p)>0]
sample_positive_prompts = [] if sample_positive_prompts is None else [p for p in sample_positive_prompts.split('\n') if len(p)>0]
sample_negative_prompts = [] if sample_negative_prompts is None else sample_negative_prompts.split('\n')
print(f"validation prompts: {validation_prompts}")
print(f"sample positive prompts: {sample_positive_prompts}")
print(f"sample negative prompts: {sample_negative_prompts}")
try:
self.training = True
self.train_cancel_button.update(interactive=True)
batch_size = 1 # other batch sizes are non-functional
save_path = train(repo_id_or_path, img_size, prompts, modules, frozen, iterations, neg_guidance, lr, save_path,
use_adamw8bit, use_xformers, use_amp, use_gradient_checkpointing,
seed=int(seed), save_every_n_steps=int(save_every),
batch_size=int(batch_size), sample_batch_size=int(sample_batch_size),
validate_every_n_steps=validate_every_n_steps, validation_prompts=validation_prompts,
sample_positive_prompts=sample_positive_prompts, sample_negative_prompts=sample_negative_prompts)
if save_path is None:
new_model_name = None
finished_message = "Training cancelled."
else:
new_model_name = f'{os.path.basename(save_path)}'
finished_message = f'Done Training! Try your model ({new_model_name}) in the "Test" tab'
finally:
self.training = False
self.train_cancel_button.update(interactive=False)
torch.cuda.empty_cache()
if new_model_name is not None:
model_map[new_model_name] = save_path
return [gr.update(interactive=True, value='Train'),
gr.update(value=finished_message),
save_path,
gr.Dropdown.update(choices=list(model_map.keys()), value=new_model_name)]
def export(self, model_name, base_repo_id_or_path, save_path, save_half):
model_path = model_map[model_name]
checkpoint = torch.load(model_path)
diffuser = StableDiffuser(scheduler='DDIM',
keep_pipeline=True,
repo_id_or_path=base_repo_id_or_path,
).eval()
finetuner = FineTunedModel.from_checkpoint(diffuser, checkpoint).eval()
with finetuner:
if save_half:
diffuser = diffuser.half()
diffuser.pipeline.to('cpu', torch_dtype=torch.float16)
diffuser.pipeline.save_pretrained(save_path)
return [gr.update(interactive=True, value='Export'),
gr.update(value=f'Done Exporting! Diffusers folder is at {os.path.realpath(save_path)}.')]
def inference(self, prompt, negative_prompt, seed, width, height, model_name, base_repo_id_or_path, pbar = gr.Progress(track_tqdm=True)):
seed = seed or 42
model_path = model_map[model_name]
checkpoint = torch.load(model_path)
if type(prompt) is str:
prompt = [prompt]
if type(negative_prompt) is str:
negative_prompt = [negative_prompt]
self.diffuser = StableDiffuser(scheduler='DDIM', repo_id_or_path=base_repo_id_or_path).to('cuda').eval().half()
finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint).eval().half()
generator = torch.manual_seed(seed)
torch.cuda.empty_cache()
images = self.diffuser(
prompt,
negative_prompt,
width=width,
height=height,
n_steps=50,
generator=generator
)
orig_image = images[0][0]
torch.cuda.empty_cache()
with finetuner:
images = self.diffuser(
prompt,
negative_prompt,
width=width,
height=height,
n_steps=50,
generator=generator
)
edited_image = images[0][0]
del finetuner
torch.cuda.empty_cache()
return edited_image, orig_image
demo = Demo()
|