Spaces:
Runtime error
Runtime error
from PIL import Image, ImageOps | |
import numpy as np | |
from collections import OrderedDict | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from keras.models import load_model | |
import gradio as gr | |
def create_plot(data): | |
sns.set_theme(style="whitegrid") | |
f, ax = plt.subplots(figsize=(5, 5)) | |
sns.set_color_codes("pastel") | |
sns.barplot(x="Total", y="Labels", data=data,label="Total", color="b") | |
sns.set_color_codes("muted") | |
sns.barplot(x="Confidence Score", y="Labels", data=data,label="Conficence Score", color="b") | |
ax.legend(ncol=2, loc="lower right", frameon=True) | |
sns.despine(left=True, bottom=True) | |
return f | |
def predict_pneumonia(img): | |
np.set_printoptions(suppress=True) | |
model = load_model('keras_model.h5', compile=False) | |
class_names = open('labels.txt', 'r').readlines() | |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
# image = Image.open(img).convert('RGB') | |
image = img | |
size = (224, 224) | |
image_PIL = Image.fromarray(image) | |
image = ImageOps.fit(image_PIL, size, Image.LANCZOS) | |
image_array = np.asarray(image) | |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
data[0] = normalized_image_array | |
prediction = model.predict(data) | |
index = np.argmax(prediction) | |
class_name = class_names[index] | |
confidence_score = prediction[0][index] | |
c_name = (class_name[2:])[:-1] | |
if c_name == "Normal": | |
pneumonia_prediction = "Chest XRay is normal no signs of pneumonia" | |
other_class = "Pneumonia" | |
else: | |
other_class = "Normal" | |
pneumonia_prediction = "Chest XRay shows signs of pneumonia" | |
res = {"Labels":[c_name,other_class], "Confidence Score":[(confidence_score*100),(1-confidence_score)*100],"Total":100} | |
data_for_plot = pd.DataFrame.from_dict(res) | |
pneumonia_conf_plt = create_plot(data_for_plot) | |
return pneumonia_prediction,pneumonia_conf_plt | |
css = """ | |
footer {display:none !important} | |
.output-markdown{display:none !important} | |
footer {visibility: hidden} | |
.hover\:bg-orange-50:hover { | |
--tw-bg-opacity: 1 !important; | |
background-color: rgb(229,225,255) !important; | |
} | |
img.gr-sample-image:hover, video.gr-sample-video:hover { | |
--tw-border-opacity: 1; | |
border-color: rgb(37, 56, 133) !important; | |
} | |
.gr-button-lg { | |
z-index: 14; | |
width: 113px; | |
height: 30px; | |
left: 0px; | |
top: 0px; | |
padding: 0px; | |
cursor: pointer !important; | |
background: none rgb(17, 20, 45) !important; | |
border: none !important; | |
text-align: center !important; | |
font-size: 14px !important; | |
font-weight: 500 !important; | |
color: rgb(255, 255, 255) !important; | |
line-height: 1 !important; | |
border-radius: 6px !important; | |
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; | |
box-shadow: none !important; | |
} | |
.gr-button-lg:hover{ | |
z-index: 14; | |
width: 113px; | |
height: 30px; | |
left: 0px; | |
top: 0px; | |
padding: 0px; | |
cursor: pointer !important; | |
background: none rgb(66, 133, 244) !important; | |
border: none !important; | |
text-align: center !important; | |
font-size: 14px !important; | |
font-weight: 500 !important; | |
color: rgb(255, 255, 255) !important; | |
line-height: 1 !important; | |
border-radius: 6px !important; | |
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; | |
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; | |
} | |
""" | |
with gr.Blocks(title="Pneumonia Detection | Data Science Dojo", css = css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
imgInput = gr.Image() | |
with gr.Column(scale=1): | |
pneumonia = gr.Textbox(label='Presence of pneumonia') | |
plot = gr.Plot(label="Plot") | |
submit_button = gr.Button(value="Submit") | |
submit_button.click(fn=predict_pneumonia, inputs=[imgInput], outputs=[pneumonia,plot]) | |
gr.Examples( | |
examples=["normal_Sample.jpg","pneumonia_sample.jpg"], | |
inputs=imgInput, | |
outputs=[pneumonia,plot], | |
fn=predict_pneumonia, | |
cache_examples=True, | |
) | |
demo.launch() |